Artificial light at night (ALAN) is a pervasive anthropogenic pollutant, increasing in intensity and scope. While its impacts on biological and ecological processes are well documented among terrestrial taxa, marine organisms have received less attention, though a quarter of the world’s coastlines are affected by artificial light at night. Furthermore, the intergenerational effects of artificial light at night have never been documented in the wild. We conducted a field manipulation experiment in the lagoon of Mo’orea, French Polynesia, using LED (Light-Emitting Diode) lights to test artificial light at night’s effects on adult life-history and offspring fitness of the coral reef anemonefish Amphiprion chrysopterus. Exposing adults and embryos to LEDs, we found artificial light at night enhanced adult growth but did not alter measured reproductive traits, including fecundity. We observed reduced parental reproductive hormone levels with downstream consequences for offspring. Hatching success was unchanged, but offspring showed reduced embryonic heart rate and yolk sac size, and drastically diminished larval escape responses and swimming performance. This comprehensive study is the first in a wild organism to demonstrate combined intergenerational and direct negative effects of artificial light at night, highlighting limited compensatory capacity. These impacts could impair larval recruitment and hinder population replenishment in reef fish. This research underscores urgent need for conservation and management to address artificial lighting impacts.
Functional trajectories during innate spinal cord repair
Adult zebrafish are capable of anatomical and functional recovery following severe spinal cord injury. Axon growth, glial bridging and adult neurogenesis are hallmarks of cellular regeneration during spinal cord repair. However, the correlation between these cellular regenerative processes and functional recovery remains to be elucidated. Whereas the majority of established functional regeneration metrics measure swim capacity, we hypothesize that gait quality is more directly related to neurological health. Here, we performed a longitudinal swim tracking study for 60 individual zebrafish spanning 8 weeks of spinal cord regeneration. Multiple swim parameters as well as axonal and glial bridging were integrated. We established rostral compensation as a new gait quality metric that highly correlates with functional recovery. Tensor component analysis of longitudinal data supports a correspondence between functional recovery trajectories and neurological outcomes. Moreover, our studies predicted and validated that a subset of functional regeneration parameters measured 1 to 2 weeks post-injury is sufficient to predict the regenerative outcomes of individual animals at 8 weeks post-injury. Our findings established new functional regeneration parameters and generated a comprehensive correlative database between various functional and cellular regeneration outputs.
Swimming Behavioural Responses and Impingement Risks of Larval Golden Perch to Fish Protection Screen Approach Velocities
Fish protection screens are increasingly being considered as management tools to prevent significant numbers of fish being extracted from Australian rivers at water diversions. Australian design standards specify an approach velocity (the perpendicular flow 8cm in front of the screen) of 0.1 m.s−1. This value was based on studies on juvenile fish, but the extent that it protects larval fish is understudied. The swimming of three ontogenetic stages of Golden perch larvae (protolarvae, postflexion and metalarvae) was observed in front of a screen in a variable speed swimming flume. Approach velocity and water temperature were varied, and the likelihood of impingement and the time for impingement to occur was measured. Swimming behaviours employed by fish to avoid impingement were also quantified. Protolarvae were the most susceptible, with almost 100% impingement at all tested velocities. Impingement became less likely as larvae increased in age. However, at velocities above 0.10 m.s−1 impingement likelihood increased for all stages. The results indicate that if an approach velocity of 0.10 m.s−1 is adhered to, that a critical time of 10 s is available in which larvae may be protected. Larvae implemented key behaviours to avoid impingement, which changed as they developed morphologically. Protolarvae displayed use of hydraulic refuging behaviours, whilst postflexion and metalarvae used a burst and coast strategy. Those that did not implement these behaviours became impinged. Current Australian specifications for fish protection screen design can therefore facilitate the protection of larval Golden perch. Protection improves significantly as larvae develop beyond the protolarval stage.
Links between mitochondrial function, whole-animal metabolic rate, telomere dynamics and swimming performance in minnows
The majority of fish swim by aerobic muscular force, and so there has been considerable interest in the metabolic basis for swimming. Most of this work has measured whole-body oxygen consumption as a metabolic proxy, without any quantification of the actual energy that is produced at the cellular level. In this study we explored links between organism level metabolic rate (both standard (SMR) and maximal (MMR)), mitochondrial function - the rates of oxygen consumption associated with oxidative phosphorylation (OXPHOS) and offsetting proton leak (i.e., OXPHOS coupling efficiency
Bio‐to‐Robot Transfer of Fish Sensorimotor Dynamics via Interpretable Model
Swimming in fish arises from tightly integrated neural, muscular, skeletal, and hydrodynamic processes that are difficult to capture in compact, transferable models for robotics. An interpretable system identification (SySID) is presented that bidirectionally maps between electromyography (EMG) and kinematics in freely swimming koi and further tests its generalization to a robotic fish. Synchronized EMG and kinematic are collected across laminar, Kármán vortex, and reverse Kármán vortex flows spanning 0.146–0.274 m s −1. A linear autoregressive with exogenous input (ARX) model architecture is chosen to capture both feedforward (EMG to kinematics) and feedback (kinematics to EMG) pathways, enabling the extraction of key system parameters, such as natural frequency, damping ratio, and input–output delays. Cross‐individual validation demonstrates robust performance and identifies the best‐performing fish‐trained model, which is then evaluated for cross‐domain transfer by replacing EMG input with processed pulse width modulation actuation signals from a robotic fish. Despite differences in mechanics and actuation physics, predictions closely match measured trajectories (mean R 2 = 0.86 ± 0.13), substantially outperforming a deep neural network (97.8% higher percentage fit index) trained on the same biological datasets. These findings show that compact, interpretable SySID models enable accurate bio‐to‐robot transfer without robot‐specific retraining, grounding robotic motion models directly in biological function rather than imitation.
Biologging assessment of behavioural and physiological responses of European seabass (Dicentrarchus labrax) during stress challenges
Stress significantly impacts fish welfare, and for a comprehensive evaluation, welfare assessment requires an integrative approach. The objective of this study is to gain insight into the physiological and behavioural responses of European sea bass subjected to swimming and crowding stress tests through biologging. Individuals implanted with biologgers were subjected to swim tunnel and crowding tests, measuring locomotion, oxygen consumption, heart rate, acceleration and QRS-wave amplitude. During swimming stress tests, oxygen consumption correlated positively with heart rate (R2 = 0.56, p < 0.001) and acceleration (R2 = 0.76, p < 0.001). Acceleration values recorded by biologgers were strongly correlated with head and tail beat frequency (R2 = 0.69 and R2 = 0.70 respectively; p < 0.001), validating heart rate and acceleration as reliable proxies for energy expenditure in sea bass. During the crowding challenge, heart rate increased progressively with each stressing event, while QRS-wave amplitude and acceleration peaked with stress but decreased in-between stressors. The assessment of physiological and behavioural responses of sea bass to swimming and crowding stress tests with biologgers allows the characterization of four welfare states, and therefore, highlights the potential of biologging for fish stress response and welfare monitoring.
Due to their renowned regenerative capacity, adult zebrafish are a premier vertebrate model to interrogate mechanisms of innate spinal cord regeneration. Following complete transection to their spinal cord, zebrafish extend glial and axonal bridges across severed tissue, regenerate neurons proximal to the lesion, and regain swim capacity within 8 weeks of injury. Here, we describe methods to perform complete spinal cord transections and to assess functional and cellular recovery during regeneration. For spinal cord injury, a complete transection is performed 4 mm caudal to the brainstem. Swim endurance is quantified as a central readout of functional spinal cord repair. For swim endurance, zebrafish are subjected to a constantly increasing water current velocity until exhaustion, and time at exhaustion is reported. To assess cellular regeneration, histological examination is performed to analyze the extents of glial and axonal bridging across the lesion.
Swimming Behavior of Percocypris pingi in the Wake of D-Shaped Obstacles: A Comparative Study of Single-and Dual-Fish Swimming in Complex Hydrodynamic Environments
The changes in water flow caused by hydropower projects and river diversions have had a profound impact on aquatic ecosystems, especially due to artificial structures such as dams and bridge piers. This study investigates the swimming behavior differences between single and dual fish in the wake region behind a D-shaped obstacle, using Percocypris pingi as the experimental species. The results show that single fish efficiently utilize vortex energy through the Kármán gait, improving swimming efficiency, while the dual-fish group failed to maintain a stable Kármán gait, resulting in irregular swimming trajectories. However, the dual-fish group optimized wake utilization by maintaining a fore–aft linear alignment, improving swimming efficiency and resisting vortices. The conclusion indicates that mutual interference in group swimming affects swimming efficiency, with fish adjusting their swimming patterns to adapt to complex hydrodynamic conditions. By altering swimming formations, fish schools can adapt to the flow environment, offering new insights into the swimming behavior of fish and providing theoretical support for ecological conservation and hydropower project design.
Beyond propulsion: muscle proprioception enables hydrodynamic sensing in fish body
In aquatic environments, muscle activity in free-swimming fishes not only propels body undulations to generate thrust but also serves as proprioceptive sensors for detecting surrounding fluid dynamics. Testing the proprioceptive function of the muscle is challenging owing to its deep integration with swimming activity. To address this, we introduce an experimental platform that records up to 12-channel electromyography (EMG) signals synchronized with detailed kinematics in koi and carp. We first apply various neural networks to map densely collected EMG signals to synchronized video-based body kinematics, thereby validating our EMG collection system. We then compare EMG data from fishes swimming in various laminar flows and within Kármán vortices. Our results show that the phase of muscle activity consistently precedes body kinematics in various laminar flows. While within Kármán vortices, we observe a mixed phase relationship, where muscle activity sometimes leads and at other times lags behind body kinematics. This suggests that fishes may use muscle proprioceptive sensing when interacting with complex flows, such as nearby vortices. Our research not only introduces novel methods for biological EMG studies but also offers insights that could influence the design of bio-inspired underwater sensory systems.
Disentangling the effects of parasite infection and temperature on the aerobic swimming performance of pumpkinseed hosts
Climate change is shifting the aerobic capacity of aquatic ectotherms, affecting their ability to move efficiently through their environment. Rising temperatures also alter host–parasite interactions, yet how these stressors interact to impact locomotion remains unclear. This is especially relevant for infections that disrupt streamlining and fin function, with implications for wild fish populations, aquaculture, and fisheries. Pumpkinseed sunfish ( Lepomis gibbosus (Linnaeus, 1758)), a popular recreational fishing species, are naturally co-infected with trematodes, forming rigid cysts on fins and body, and cestode tapeworms, infecting the liver and digestive tract. We tested whether pumpkinseed swimming performance is affected by drag from cysts by measuring critical swimming speed ( U crit ) and aerobic metabolic traits in naturally infected fish and fish treated to remove cestodes. Individuals with more cysts had lower U crit, maximum metabolic rate (MMR) and aerobic scope, likely due to increased drag. Next, we acclimated wild-caught, co-infected fish to 20, 25, and 30 °C and measured U crit and MMR. Warmer temperatures increased both metrics, and internal parasites were related to reduced MMR and U crit. Overall, infections can impair swimming by increasing drag and through physiological effects, but warming does not appear to exacerbate these effects in species not living near their thermal limits.
Loss of dcst2 expression in male zebrafish is not associated with muscle hypertrophy
Recently, a large family of French-Canadians was found to possess above-average strength and muscle hypertrophy that segregated with a single variant in the gene encoding Dendritic Cell-specific Six Transmembrane domain containing protein 2 (DCST2). To investigate the potential role DCST2 has in muscle cell biology we used the CRISPR/Cas9 mutagenic system and generated a 2-nucleotide deletion in exon 3 of zebrafish dcst2 resulting in a frameshift mutation. Homozygous carriers of the mutation displayed reduced transcriptional expression of dcst2 suggesting that our mutation disrupted gene expression. Homozygous mutant dcst2 zebrafish developed normally to adulthood and displayed no differences in motor function using a free-swim and swim tunnel assays. Furthermore, histological examination of muscle cells revealed no differences in slow-twitch or fast-twitch muscle cell cross-sectional area in our mutants. We did observe that male dcst2−/− zebrafish were infertile. The data collected here, suggest that dcst2 does not play a role in zebrafish muscle cell biology.
Comparison of static-bath and flowing-water Flavobacterium columnare challenge methods with juvenile Chinook Salmon
Objective Flavobacterium columnare is a common pathogen of Chinook Salmon Oncorhynchus tshawytscha in the Klamath River. Elevated water temperatures invoke congregation behavior within thermal refugia and are associated with columnaris disease. A flowing-water F. columnare challenge system was compared with the standard static-bath challenge as an initial step in simulating a riverine exposure. Methods Juvenile Chinook Salmon were exposed to 103 CFU/mL F. columnare for 20 h either in an aerated static bath or within a recirculation swim chamber set at one body length per second. Fish were held at a constant 20°C or exposed to short-term temperature fluctuations to a maximum of 24°C prior to the challenge. Mucus and gill samples were collected at the end of the 20-h challenge and from fish held up to 96 h postchallenge. Samples were assayed for detection of F. columnare by quantitative PCR and conventional plate culture method. Results In static-bath challenge groups, F. columnare was detected in asymptomatic (38%) and moribund Chinook Salmon (29%). In contrast, F. columnare was detected in only one asymptomatic (4%) and one moribund (4%) Chinook Salmon in the flowing-water challenge groups. Prechallenge temperature conditions had no effect on infection. Other yellow-pigmented bacteria were isolated from the Chinook Salmon (particularly static-bath challenge) but were not associated with morbidity or amplified in the F. columnare quantitative PCR. Conclusions Low transmission of F. columnare occurred among juvenile Chinook Salmon under flowing-water conditions simulating a thermal refugia during early summer (20°C, flow of one body length per second, 20-h exposure to 103 CFU/mL). The flowing-water system is sufficient to examine the environmental factors (velocity, temperature, host density, duration, and bacterial concentration of exposure) of riverine exposures on F. columnare transmission to juvenile Chinook Salmon.
Aerobic exercise ameliorates skeletal muscle atrophy in atic knockout zebrafish through the oxidative phosphorylation pathway
Interactive effects of hydrodynamics and microplastics on bioaccumulation, histopathological alterations, biomarker responses, and gene expression in grass carp brain
Recently, concerns about the toxicity of microplastics (MPs) pollution have attracted significant attention. However, the influence of hydrodynamics on MPs bioaccumulation in fish, and the associated risks, remains poorly understood. Therefore, this study addressed this critical knowledge gap by examining how water velocity, individual and in combination with MPs, impacts brain in juvenile grass carp (Ctenopharyngodon idella). Fish were exposed for seven days (28 h total, with 2-h sessions twice daily) to 5 µm polystyrene MPs (PS-MPs) at an environmentally relevant concentration of 1000 µg/L across eight groups: control, low (LV), medium (MV), and high (HV) water velocity, MPs-only, and three combined treatments (MPs + each velocity level). Fish exposed to the MPs + HV group illustrated the highest accumulation of PS-MPs with a concentration of 33.94 ± 1.00 × 10 3 μg/kg (p < 0.05) and exhibited more brain damage, including hemorrhage, edema, and tissue rupture. Furthermore, this group demonstrated significantly increased superoxide dismutase (SOD) and lipid peroxidation (LPO) activities, along with significant reduction in acetylcholinesterase (AChE) activity (p < 0.05), providing clear evidence of oxidative stress and neurotoxicity. Transcriptomic analysis showed a significant variation in gene expression with associated key pathways such as DNA repair, RNA transport, FoxO signaling, and MAPK signaling, indicating active cellular responses to genetic damage. Overall, this study highlighted the critical role of hydrodynamics in MPs bioaccumulation in fish and the compounded risks of MPs and water velocity, emphasizing the crucial need for monitoring of MPs pollution in dynamic aquatic environments, particularly in riverine systems.
Inferring the metabolic rate of zebrafish in still water from mouth opening and pectoral‐fin beating
The inference of metabolic rate from behavioural measurements is an open question in fish biology. Here, we put forward a predictive model of zebrafish ( Danio rerio ) metabolic rate in still water from mouth opening and pectoral‐fin beating. Our analysis revisits experimental results published in this journal, reprocessed to include information about the pectoral‐fin beating. Using Cobb–Douglas function, we identify a positive (negative) correlation between metabolic rate and mouth opening amplitude (pectoral‐fin amplitude), pointing at the interplay between buccal pumping and pectoral‐fin stabilization.
FlowSight: Vision-Based Artificial Lateral Line Sensor for Water Flow Perception
Identifying the optimal flow conditions of a fishway with two entrances for endemic fishes at a high-altitude hydropower station in the Tibetan Himalaya, China
Objective Freshwater systems have undergone major changes relative to their hydrologic profile, thermal regime, habitat, and connectivity due to anthropogenic causes. Migratory species are particularly susceptible to such changes given the distances that they travel and the diversity of habitats occupied through their life history. Because of this, it is becoming increasingly important to understand freshwater species’ behavior and physiology to help facilitate their up- and downstream passage past physical and hydrological barriers. Here, we use a combination of approaches, including an enzyme assay that measures the reduction of oxygen in the mitochondria to evaluate the potential thermal tolerance of juvenile (<1 year old) Paddlefish Polyodon spathula acclimated at three temperatures (12, 20, and 25°C). We also used critical swimming speed trials to determine the swimming capacity and respiration rate of juvenile Paddlefish that were acclimated to those three temperatures. Methods We collected skeletal muscle samples from three areas of each fish (dorsal epaxial white skeletal muscle, abdominal white hypaxial skeletal muscle, and a combination of epaxial and hypaxial skeletal muscle tissue [mix of white and red fibers] from the caudal peduncle) to determine whether the estimated enzymatic thermal tolerance was different across tissue types for potential future application to field-collected adult Paddlefish. Results The temperatures at peak enzymatic activity differed across tissue these collection sites (range: 23.12–35.55°C), suggesting that tissue collection site should be carefully considered. Critical swimming speed did not vary significantly across acclimation temperatures (mean ± SE = 40.4 ± 3.03 at 12°C, 59.18 ± 7.08 at 20°C, and 50.13 ± 11.56 at 25°C). Although respiration rate increased with swimming speed, there were no significant differences in maximum metabolic rate across acclimation temperatures during critical swimming trials. Conclusions These data contribute to filling our knowledge gaps concerning the metabolic demands, swimming behavior, and thermal sensitivity of juvenile Paddlefish and suggest that nonlethal approaches may be possible.
Compensatory sensory mechanisms in naïve blind cavefish navigating novel environments after lateral line ablation
Fishes navigating complex aquatic environments rely on various sensory systems, primarily the lateral line system and vision, to guide their movements. One interesting example is the Mexican blind cavefish (Astyanax mexicanus). This fish relies on the lateral line system as it navigates through the environment without the aid of sight. It is unclear, however, how they might navigate through a novel environment when the lateral line is not functional. In this study, we used high-speed videography to quantify whether naïve blind cavefish alter locomotor behavior, navigation patterns, and the use of body and fins to explore a novel environment with obstacles when the lateral line is ablated. Blind cavefish with an intact lateral line demonstrated deliberate slower exploratory movements and navigated around obstacles with fewer touching events. Conversely, fish with ablated lateral line exhibited increased speed to potentially improve flow sensing. Fish with an ablated lateral line also touched obstacles more often, suggesting a reliance on fin and snout mechanoreception for navigation. These results show the blind cavefish have compensatory sensory mechanisms to navigate novel environments when their major sensory system is not functioning.
Development of a response spectrum model for bifenthrin in juvenile Chinook Salmon (Oncorhynchus tshawytscha)
The endangered anadromous naked carp Gymnocypris przewalskii is a rare fish species found in Qinghai Lake, China. Studying the swimming abilities of naked carp is crucial for enhancing the design of passageways for these unique fish. Two regression models were employed to assess the influence of salinity, water temperature, body size, and gender on induced flow velocity (Uind), critical swimming speed (Ucrit), burst swimming speed (Uburst), and endurance in naked carp. The findings pointed toward the fact that larger fish under-performed smaller fish for (Uind), (Ucrit), (Uburst), and endurance. Male fish generally attained higher (Uind), (Ucrit), (Uburst), and endurance than female fish. Naked carp in saltwater demonstrated a higher level of (Uind), (Ucrit), and (Uburst) than freshwater. The velocity limit of the pool-and-weir fishway should be lower than the fastest flow speed fish can swim against over a specific distance. The endurance model can estimate the maximum swimming distance at various flow velocity barriers. Observed results can guide design and operation criteria of pool-and-weir fishways for native naked carp.
Biopsy sampling of red muscle does not affect physiological performances in rainbow trout
Objective Mutations in TARDBP (encoding TDP‐43) are associated with the neurodegenerative disease amyotrophic lateral sclerosis (ALS) and include familial missense mutations where there are a lack of models and mechanisms examining how they are pathogenic.
Gas bubble trauma of Schizothorax prenanti at various life stages induced by total dissolved gas supersaturation
Total dissolved gas supersaturation (TDGS), commonly resulting from dam discharge, poses significant threats to fish survival by inducing gas bubble trauma (GBT) in downstream populations. Understanding the sensitivity of fish to TDGS during developmental stages is critical for evaluating survival risks during flood seasons. This study investigated the adverse effects of TDGS on three life stages-eggs, larvae, and juveniles-of the endemic fish Schizothorax prenanti (S. prenanti) in the upper Yangtze River. After hatching in 120 % and 130 % TDG levels, both eggs and larvae exhibited severe GBT symptoms with survival rates declining to 70 % and 77 % respectively, compared to 88 % in the control group. Hatching rates also dropped significantly to 66 % and 59 %, compared to 84 % in the control group. Larvae exhibited a marked reduction in body length at TDG levels above 120 %, while heart rates increased significantly at TDGS levels above 110 %. Juveniles subjected to 120 % and 130 % TDGS showed extensive GBT symptoms, with median lethal times of 92 and 35 h, respectively. After 35 h of exposure, juveniles in the 130 % TDGS group showed significant reductions in active metabolic rate (AMR), standard metabolic rate (SMR), and factorial aerobic scope (F-AS), while critical swimming speed (U crit ) and burst swimming speed (U burst ) remained unchanged compared to the control group. In terms of S. prenanti exposed to 130 % TDGS, U crit and U burst significantly declined when survival rate dropped to 25 %, while AMR, SMR, and F-AS exhibited significant changes prior to mortality occurred. Moreover, AMR, SMR, and F-AS in juveniles were more vulnerable to TDGS than U crit and U burst. These findings enhance the understanding of TDGS-induced stress on developing fish and support the development of ecological management strategies for TDG during flood seasons.
Adult predation shapes the evolution of swimming performance in guppies (Poecilia reticulata)
Predation pressure plays an important role in shaping animal behaviour and physiology, driving prey species to evolve stronger escape strategies. Swimming performance is a key trait for many aquatic organisms to evade predation. It is therefore intuitive that increased predation pressure should select for faster swimming abilities when outswimming predators is a viable option for prey. However, experimental evidence allowing for a causal link between predation and the evolution of swimming performance is currently lacking. Here, we used artificial selection lines of guppies (Poecilia reticulata) based on predation survival to test the evolutionary relationship between predation pressure and swimming speed. We used a swim tunnel with incremental increase in water flow to test critical swimming speed. Our results show that predation-line females, but not males, outperformed those of the control-lines in critical swimming speed. We also found that in predation-line females the variance in critical swimming speed was reduced in comparison with control-line females, which is congruent with directional selection against slow swimming genotypes. This study provides experimental evidence for the evolutionary role of predation pressure in enhancing swimming performance and shaping behavioural adaptations in prey species.
Nothobranchius furzeri: a vertebrate model for studying cardiac aging and cellular senescence
African turquoise killifish (Nothobranchius furzeri) is the shortest-lived vertebrate that can be bred in captivity, making it an ideal model organism for aging studies. However, whether the animal can be used for studying cardiac aging and whether cellular senescence contribute to this ageing process remain unclear. Here, we conducted a longitudinal study on the GRZ strain, aiming to identify phenotypic and functional markers for cardiac aging. We found that cardiac ageing in GRZ fish can be measured by comparing fish at 16 weeks to 8 weeks of age, using systemic markers such as body/fin coloration, body weight, BMI, cardiac ageing markers such as EF, E/A ratio, and swimming capacity, and cellular senescence markers such as SA-β-gal staining, p15/p16, γ-H2A.X, and SASP markers. Senolytic treatment with D (Dasatinib) and Q (Quercetin) from 12 to 16 weeks mitigated senescence and decelerated cardiac ageing. Together, our findings established GRZ as a useful vertebrate model for studying cardiac ageing and related cardiac senescence.
The contribution of tissue-specific mitochondrial respiration to individual variation in oxygen uptake during rest and exercise by the Gulf killifish, Fundulus grandis
Variation in rates of oxygen uptake (Mo 2 ) among individuals within a species is widespread and observed during both rest and activity. Such variation is expected to be important in animal physiology, ecology, and evolution, yet the mechanistic bases for this variation are incompletely understood. In the present study, we asked whether interindividual variation in Mo 2 at rest (standard Mo 2) and during an incremental swim test (peak swimming Mo 2 [peak Mo 2,swim ]) in Gulf killifish ( Fundulus grandis ) is related to variation in mitochondrial Mo 2 in five tissues: heart, oxidative skeletal muscle, glycolytic skeletal muscle, liver, and brain. After accounting for the effects of body mass, Mo 2,standard was positively related to liver mass and its maximum capacity for oxygen flux by the electron transport system (ETS). Peak Mo 2,swim was positively related to ETS respiration by heart ventricle and mitochondrial respiration required to offset the dissipation of the proton gradient in the absence of ATP synthesis (LEAK) by glycolytic skeletal muscle. The relationship between peak Mo 2,swim and glycolytic muscle LEAK respiration prompted us to examine the relationship between the aerobic cost of transport and mitochondrial phosphorylation efficiency in glycolytic skeletal muscle. We found that individuals with a lower phosphorylation efficiency consumed more oxygen to travel a given distance (i.e., had a higher aerobic cost of transport). This result supports the idea that LEAK respiration represents an energetic cost during activity, which might be partially offset if higher LEAK results in less reactive oxygen species formation.
Spinal cord repair is modulated by the neurogenic factor Hb-egf under direction of a regeneration-associated enhancer
Unlike adult mammals, zebrafish regenerate spinal cord tissue and recover locomotor ability after a paralyzing injury. Here, we find that ependymal cells in zebrafish spinal cords produce the neurogenic factor Hb-egfa upon transection injury. Animals with hb-egfa mutations display defective swim capacity, axon crossing, and tissue bridging after spinal cord transection, associated with disrupted indicators of neuron production. Local recombinant human HB-EGF delivery alters ependymal cell cycling and tissue bridging, enhancing functional regeneration. Epigenetic profiling reveals a tissue regeneration enhancer element (TREE) linked to hb-egfa that directs gene expression in spinal cord injuries. Systemically delivered recombinant AAVs containing this zebrafish TREE target gene expression to crush injuries of neonatal, but not adult, murine spinal cords. Moreover, enhancer-based HB-EGF delivery by AAV administration improves axon densities after crush injury in neonatal cords. Our results identify Hb-egf as a neurogenic factor necessary for innate spinal cord regeneration and suggest strategies to improve spinal cord repair in mammals. Zebrafish can regenerate after paralyzing spine injuries and regain locomotor ability, unlike mammals. Here authors show that the neurogenic factor Hb-egf promotes spinal cord regeneration in zebrafish and is regulated by an enhancer that can similarly direct expression in the pro-regenerative setting of neonatal mice.
Spinal cord injury (SCI) is one of the most frequent causes of disability, accompanied by motor and postural impairments, as well as autonomic and behavioural disorders. Since the beginning of the last century, researchers have been developing and refining experimental models of SCI to study pathogenesis and find therapies. Since the beginning of the 20th century, quite a wide range of methods have been developed for contusion and compression injury, complete and partial transection of the spinal cord, and many others. The choice of model subject in such studies was not limited to mammals, but also included amphibians, lampreys, and even fish. Many functional tests have been proposed to assess functional recovery after injury in laboratory animals, ranging from simple rating scales to locomotion kinematics or recording of spinal neuronal activity. This review describes existing models of SCI in most animal species used in neurobiology. Their key characteristics are discussed, which determine the choice of model and model animals depending on the experimental tasks. Each experimental model of SCI has its own advantages and disadvantages determined by species-specific features of spinal cord anatomy and physiology, the speed of recovery from injury, and the ratio of the necrosis zone to the penumbra. The applicability and availability of the proposed methods for assessing the speed and completeness of recovery is also an important factor.
Protocol to measure spontaneous locomotion, graded exercise oxygen consumption, and cross-sectional area of skeletal muscle cells in zebrafish
Skeletal muscle function and quality are strong indicators of metabolic health. Here, we present a protocol for skeletal muscle phenotyping in zebrafish. We describe steps to evaluate spontaneous locomotion, measure oxygen consumption during incremental exercise, and analyze cross-sectional area of skeletal muscle cells in adult zebrafish. This protocol has potential applications to assess zebrafish muscle quality and function in studies of metabolic diseases, aging, and skeletal muscle health. For complete details on the use and execution of this protocol, please refer to Grepper and Tabasso et al. 1.
The physiological response of juvenile diploid and triploid Arctic charr Salvelinus alpinus to exhaustive exercise
Triploidy is an effective tool for producing sterile fishes but often results in impaired performance in commercial aquaculture. In light of this, our study compared the physiological response to exhaustive exercise in juvenile diploid and triploid Arctic charr Salvelinus alpinus, a polar species with great potential for aquaculture. A standard ramping swimming protocol revealed no significant difference in critical swimming velocity ( U crit ) between ploidies. There was also no effect of ploidy on post‐ U crit blood glucose, lactate or haematocrit. However, triploids had a significantly higher frequency of erythrocyte nuclear segmentation. Independent of ploidy, there was also a significant positive correlation between blood lactate levels and U crit. We conclude that triploidy does not impair the response to exhaustive exercise in juvenile S. alpinus.
Evaluating the metabolic response to temperature using otolith carbon isotopes as an intrinsic metabolic tracer in juvenile chum salmon Oncorhynchus keta
This study focuses on selecting the most appropriate turbulence model for simulating fish swimming behavior in river confluences. To achieve this, three numerical models—k-ε, k-ω, and large eddy simulation—were compared by running simulations under identical flow conditions and evaluating the results against biological experimental data. Among the models, the k-ω model demonstrated the smallest relative error, consistently within 5% of the experimental results, confirming its superior accuracy and reliability for this application. The k-ω model's ability to capture boundary layer turbulence and near-wall flow dynamics proved essential for studying fish swimming in complex turbulent environments. Simulations revealed that both the flow velocity ratio between the main stream and tributary and the confluence angle are critical factors influencing the flow structure. At higher flow velocity ratios (R = 1/3 and 3/1) or large confluence angles (α ≥ 90°), turbulence intensity increased, leading to more complex vortex formations that significantly impacted fish swimming speed. When the flow velocity ratio (R) is 1/3, the fish can achieve a maximum swimming speed of 2.75 L/s, which is significantly higher than the swimming speed of 1.18 L/s observed when R is 3/1. Additionally, fish closer to the center of the flow field experienced greater turbulence, resulting in higher energy expenditure. The findings provide crucial insights into the hydrodynamic mechanisms driving fish swimming behavior in dynamic aquatic environments.
Taurine efflux counters the hydrodynamic impact of anaerobic metabolism to protect cardiorespiratory function under acute thermal stress in brook char (Salvelinus fontinalis)
Cardiac taurine efflux is necessary to counteract swelling and protect function following osmotic stress caused by increased cardiac demands and the accumulation of anaerobic end products at high temperatures in fish.
Speed‐dependent locomotor patterns during steady swimming in a demersal shark
Swimming ability is critical for navigating complex benthic habitats, yet the biomechanical strategies demersal sharks employ to modulate body and fin movements across varying speeds remain largely unexplored. This study examines speed‐dependent kinematic patterns in the small‐spotted catshark ( Scyliorhinus canicula ), a benthic species with limited endurance for sustained swimming. Using high‐speed videography in a flow tank, we quantified adjustments in tail beat frequency, body angle, wave speed and curvature across a range of speeds (0.5–6 body lengths per second). Our results reveal that S. canicula exhibits distinct kinematic shifts as speed increases, adopting a more streamlined posture and increasing tail beat frequency to accommodate higher flow rates. Principal component analysis identified swimming speed as the primary factor influencing kinematic variation, with higher speeds necessitating more consistent body alignment and tail movement. Strouhal numbers within the optimal range for propulsive efficiency (0.2–0.4) at intermediate speeds (1–2 BL s −1 ) suggest that S. canicula maximizes energetic efficiency within this range, although further research is required to elucidate the metabolic implications. This study establishes a foundational framework for understanding the biomechanics of steady swimming in a demersal shark, providing insights into the ecological and evolutionary pressures shaping locomotor adaptations in benthic species.
Yolo-AWD+ CBT: An efficient algorithm for Micropterus salmoides swimming behavior analysis based on multi-object tracking
By linking gene regulation to swimming performance under different water flow conditions, the study could reveal how the fish adapt to their environments, providing insights into evolutionary biology and ecology. The current study observed significant variations in swimming performance under various water flow velocities and examined the associated gene regulation. Grass carp were subjected to controlled water velocities to measure the critical swimming speed ( U crit ), which showed that the swimming performance was increased based on body length; however, a reduction in swimming performance was observed as the water flow increased ( p < 0.05). Additionally, brain samples were collected for transcriptomic analysis, which revealed that differentially expressed genes (DEGs) were functionally annotated revealing key pathways associated with changed behavior patterns. The Enrichment analysis showed significant variation in all groups including behavior ( p < 0.05***), skeletal system development ( p < 0.05***), hormone activity ( p < 0.05***), muscle contraction ( p < 0.05**), locomotion ( p < 0.05*), and swim bladder development ( p < 0.05*) were found the major regulators of behavior in grass carp under water velocities. Moreover, some genes were identified and found significantly different for enzymes and hormones, which could play a potential role during swimming performance such as gene‐ca7 ( p < 0.005***). The current study provides evidence of the neurogenetic mechanism underlying the changed swimming activity of grass carp under water velocity, which could have important implications for understanding the impact of hydrodynamics and the fish.
Using heart rate and acceleration biologgers to estimate winter activity costs in free-swimming largemouth bass
Winter is a critical period for largemouth bass (Micropterus nigricans) with winter severity and duration limiting their population growth at northern latitudes. Unfortunately, we have an incomplete understanding of their winter behaviour and energy use in the wild. More winter-focused research is needed to better understand their annual energy budget, improve bioenergetics models, and establish baselines to assess the impacts of climate warming; however, winter research is challenging due to ice cover. Implantable tags show promise for winter-focused research as they can be deployed prior to ice formation. Here, using swim tunnel respirometry, we calibrated heart rate and acceleration biologgers to enable estimations of metabolic rate (ṀO 2 ) and swimming speed in free-swimming largemouth bass across a range of winter-relevant temperatures. In addition, we assessed their aerobic and swim performance. Calculated group thermal sensitivities of most performance metrics indicated the passive physicochemical effects of temperature, suggesting little compensation in the cold; however, resting metabolic rate and critical swimming speed showed partial compensation. We found strong relationships between acceleration and swimming speed, as well as between ṀO 2 and heart rate, acceleration, or swimming speed. Jackknife validations indicated that these modeled relationships accurately estimate swimming speed and ṀO 2 from biologger recordings. However, there were relatively few reliable heart rate recordings to model the ṀO 2 relationship. Recordings of heart rate were high-quality during holding but dropped during experimentation, potentially due to interference from aerobic muscles during swimming. The models informed by acceleration or swimming speed appear to be best suited for field applications.
Hypoxia-acclimation adjusts skeletal muscle anaerobic metabolism and burst swim performance in a marine fish
Red drum, Sciaenops ocellatus, are a marine teleost native to the Gulf of Mexico that routinely experiences periods of low oxygen (hypoxia). Recent work has demonstrated this species has the capacity to improve aerobic performance in hypoxia through respiratory acclimation. However, it remains unknown how hypoxia acclimation impacts anaerobic metabolism in red drum, and the consequences of exhaustive exercise and recovery. Juvenile fish were acclimated to normoxia (n = 15, DO 90.4 ± 6.42 %) or hypoxia (n = 15, DO 33.6 ± 7.2 %) for 8 days then sampled at three time points: at rest, after exercise, and after a 3 h recovery period. The resting time point was used to characterize the acclimated phenotype, while the remaining time points demonstrate how this phenotype responds to exhaustive exercise. Whole blood, red muscle, white muscle, and heart tissues were sampled for metabolites and enzyme activity. The resting phenotype was characterized by lower pH e and changes to skeletal muscle ATP. Exhaustive exercise increased muscle lactate, and decreased phosphocreatine and ATP with no effect of acclimation. Interestingly, hypoxia-acclimated fish had higher pH e and pH i than control in all exercise time points. Red muscle ATP was lower in hypoxia-acclimated fish versus control at each sample period. Moreover, acclimated fish increased lactate dehydrogenase activity in the red muscle. Hypoxia acclimation increased white muscle ATP and hexokinase activity, a glycolytic enzyme. In a gait-transition swim test, hypoxia-acclimated fish recruited anaerobic-powered burst swimming at lower speeds in normoxia compared to control fish. These data suggest that acclimation increases reliance on anaerobic metabolism, and does not benefit recovery from exhaustive exercise.
Influence of microplastic pollution on the toxicity of potamodromous fish grass carp (Ctenopharyngodon idellus) and its swimming capacity
This study aimed to investigate the impact of acute velocity stress on the exercise physiology of mandarin fish (Siniperca chuatsi). Initially, the relative critical swimming speed (U’crit) was estimated to be around 4.87 body lengths per second (bl/s), while the relative burst swimming speed (U’burst) reached approximately 8.60 bl/s. Then, the results showed that as the flow velocity increased, the oxygen consumption rate (MO2) of mandarin fish gradually elevated, while the cost of transport (COT) displayed a decreasing trend. Subsequently, four groups were established for the experiment, including control group (0 %Ucrit), low flow velocity (20 %Ucrit), medium flow velocity (50 %Ucrit) and high flow velocity (80 %Ucrit). The results showed that with the increase of flow velocity, the content of muscle glycogen decreased gradually and the content of muscle lactate increased significantly. Furthermore, the results of serum myocardial enzymes and antioxidant enzymes showed that the levels of creatine kinase (CK), total antioxidant capacity (T-AOC) and glutathione peroxidase (GSH-Px) exhibited an initial increase followed by a decrease. During the examination of the gills, the highest level of Na+-K+-ATPase was reached at 80 %Ucrit, while the content of malondialdehyde (MDA) was significantly reduced. Additionally, transcriptomic sequencing was conducted on 0 %Ucrit and 80 %Ucrit groups, resulting in the identification of 101 upregulated genes and 116 downregulated genes. KEGG enrichment analysis revealed that the differentially expressed genes (DEGs) were significantly enriched in lipid metabolism and signal transduction. Finally, it was observed that the MAPK signaling pathway within the signaling transduction pathway exhibited the highest number of annotated DEGs. In general, it can be inferred that mandarin fish may regulate lipid peroxidation levels, and MAPK signaling pathway as an adaptive response to mitigate the effects induced by acute velocity stress. The above research is of great significance for improving the farming method of mandarin fish.
Swimming ability of schizothoracinae fishes in Yarlung Zangbo River of China
The Yarlung Zangbo River is a river with abundant hydropower resources but fragile biodiversity in China. As an important benchmark for both research and ecological management, there is still a lack of knowledge about the swimming ability of fishes in the Yarlung Zangbo River. The induced flow velocity ( U ind ), critical swimming speed ( U crit ), and burst swimming speed ( U burst ) of five Schizothoracinae species were tested in this study. Relative swimming ability related to body length and body shape was calculated. The results indicated that the average absolute swimming speeds ( U ind‐a, U crit‐a, and U burst‐a ) of all the experimental fish were 10.20 ± 0.01, 57.58 ± 3.28, and 69.54 ± 2.94 cm/s, respectively, and the corresponding relative U ind, U crit, and U burst related to body length ( U ind‐l, U crit‐l, U burst‐l ) were 1.15 ± 0.07, 5.04 ± 0.26, and 7.23 ± 0.28 BL/s, respectively. Moreover, relative U ind, U crit, and U burst related to body shape ( U ind‐s, U crit‐s, and U burst‐s ) were 0.80 ± 0.13, 2.49 ± 0.51, and 4.32 ± 0.57 cm −2 /s, respectively. No significantly differences in relative swimming speeds existed among five species. Only Oxygymnocypris stewartii was significantly weaker in U burst‐s than Schizothorax o'connori. The body shape showed a stronger relationship with swimming speed than the body length did. Schizothoracinae fish in the Yarlung Zangbo River basin are less sensitive to the water flow and performed weaker U crit and U burst compared to those in the Yangtze River basin, indicating that Schizothoracinae fish in the Yarlung Zangbo River may be more susceptible to threats from environmental changes. The paper enriched the research on the swimming ability of Schizothoracinae fishes and provided efficient data for the fish conservation in the Yarlung Zangbo River.
CHCHD10P80L knock-in zebrafish display a mild ALS-like phenotype
Mutations in the nuclear-encoded mitochondrial gene CHCHD10 have been observed in patients with a spectrum of diseases that include amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). To investigate the pathogenic nature of disease-associated variants of CHCHD10 we generated a zebrafish knock-in (KI) model expressing the orthologous ALS-associated CHCHD10 P80L variant (zebrafish: Chchd10 P83L ). Larval chchd10 P83L/P83L fish displayed reduced Chchd10 protein expression levels, motor impairment, reduced survival and abnormal neuromuscular junctions (NMJ). These deficits were not accompanied by changes in transcripts involved in the integrated stress response (ISR), phenocopying previous findings in our knockout (chchd10 -/- ). Adult, 11-month old chchd10 P83L/P83L zebrafish, displayed smaller slow- and fast-twitch muscle cell cross-sectional areas compared to wild type zebrafish muscle cells. Motoneurons in the spinal cord of chchd10 P83L/P83L zebrafish displayed similar cross-sectional areas to that of wild type motor neurons and significantly fewer motor neurons were observed when compared to chchd2 -/- adult spinal cords. Bulk RNA sequencing using whole spinal cords of 7-month old fish revealed transcriptional changes associated with neuroinflammation, apoptosis, amino acid metabolism and mt-DNA inflammatory response in our chchd10 P83L/P83L model. The findings presented here, suggest that the CHCHD10 P80L variant confers an ALS-like phenotype when expressed in zebrafish.
Metabolic fuel selection in rainbow trout: Coping with Intralipid infusion
How do fish respond to an intralipid infusion (a soybean-derived emulsion used for parenteral nutrition of human patients)? In rainbow trout, intralipid administration triples the rate of lipid mobilization (lipolysis) and reduces hepatic glucose production by 36%. These changes in substrate fluxes allow fish to decrease their reliance on amino acids and carbohydrates by substituting them with fatty acids as metabolic fuels.
Corticotropin‐releasing hormone receptor 1 mediates the enhanced locomotor activity and metabolic demands to an acute thermal stress in adult zebrafish
We recently showed that Crh‐Crhr1 signalling is essential for acute stress‐related locomotor activity in zebrafish larvae. However, the possibility that Crhr1 activation may also initiate the acute metabolic demands for stress coping was unexplored. Here, we tested the hypothesis that Crhr1 signalling is essential for the thermal stressor‐induced increases in the acute metabolic rate, a key response for coping with the enhanced energy demands during stress. We tested this by using a wildtype (WT) and a ubiquitous Crhr1 knockout (crhr1 −/− ) zebrafish and subjecting them to an acute thermal stressor (TS: +5°C above ambient for 60 min). The TS induced the heat shock proteins response in both genotypes, but the elevated cortisol response observed in the WT was absent in the crhr1 −/− mutant. The TS also increased the locomotor activity and the metabolic rate in the WT fish, but this response was inhibited in the crhr1 −/− mutants. To test if this was due to a lack of TS‐induced cortisol elevation in the crhr1 −/− mutant, we mimicked the response in the WT fish by treating them with metyrapone, an 11β‐hydroxylase inhibitor. While metyrapone inhibited the TS‐induced cortisol elevation in the WT, it did not affect the metabolic rate. The lack of Crhr1 also reduced the swimming performance, and the lower U crit in the mutants corresponded with alterations in muscle energy metabolism. Together, our results indicate that Crh‐Crhr1 signalling, independent of downstream cortisol action, is essential for the TS‐induced acute hyperlocomotor activity and the associated increases in the metabolic demand for stress coping.
Calibration of accelerometer transmitters to enable estimation of field metabolic rates in walleye
Bioenergetic modelling is valuable for addressing many questions in animal ecology. However, applying these models to wild animals is limited by challenges with collecting in situ energetics data. Accelerometers have emerged as a popular tool to estimate field metabolic rates. We conducted laboratory experiments using a swim tunnel respirometer on wild (n=28) and hatchery-origin (n=19) walleye (Sander vitreus) to calibrate acoustic accelerometer transmitters (InnovaSea V13A and V16AT) for estimating metabolic rate (ṀO2). Walleye (0.36-3.06 kg) underwent ramp-Ucrit swim trials (n=70) amongst temperatures (5-21°C). Using mixed-effects models, we analyzed critical swimming speed (Ucrit), swimming speed, tailbeat frequency, and ṀO2 as functions of body mass, acceleration, sex, and water temperature. ṀO2 decreased with body mass and increased with higher swimming speeds, acceleration values, and water temperatures. Notably, ṀO2 increased more rapidly with acceleration at higher temperatures. No mass-specific sex differences were observed across measured parameters, and there were no differences in Ucrit or ṀO2 between control and tagged fish. These findings support the use of accelerometers to generate field estimates of energy expenditure in wild walleye.
Preferred and Optimal Swimming Speeds in Rainbow Trout (Oncorhynchus mykiss) at Three Temperatures
Sustained exercise in aquaculture is known to improve the health and growth of finfish. Implementing exercise regimes has become an increasing focus in aquaculture practice. This study examined the relationship between the preferred swimming speed (Upref) and the optimal swimming speed (Uopt) in rainbow trout (Oncorhynchus mykiss) under non-migratory conditions typical of aquaculture environments. Using a circular raceway, rainbow trout were allowed to swim voluntarily to determine Upref. Uopt was measured using a forced-swimming test in a swim tunnel respirometer. Experiments were conducted at three temperatures (10 °C, 15 °C, and 20 °C). The results revealed a significant difference between Upref (1.18 ± 0.14, 1.17 ± 0.19, and 1.24 ± 0.15 BL s−1, respectively) and Uopt (1.4 ± 0.19, 1.5 ± 0.15, and 1.6 ± 0.24 BL s−1, respectively) across all temperatures. Aerobic scope was greatest at 15 °C (3.8), consistent with the species’ thermal range. Notably, swimming at Upref required 18–22% less energy than Uopt, suggesting that Upref is more suitable for aquaculture systems. This study introduces a minimally invasive and stress-free method for determining Upref and provides insights that can optimize flow regimes in aquaculture tanks, improving both energy efficiency and fish welfare.
An in-situ study in the Xijiang River basin revealed adverse effects of total dissolved gas supersaturation on fish
High dam discharge can lead to total dissolved gas (TDG) supersaturation in downstream rivers, causing fish to suffer from bubble trauma and even mortality. Focusing on the Datengxia hydropower station in the Xijiang River basin, we conducted in-situ experiments to explore the tolerance patterns of economic fish species, including Ctenopharyngodon idella, Hypophthalmichthys molitrix, and Cirrhinus molitorella, under the influence of TDG supersaturation at different compensation depths. Moreover, the development and recovery patterns of bubble trauma and the swimming ability of fish exposed to TDG supersaturated water were investigated. In-situ experiments showed that TDG supersaturation ranged from 112.2 % to 125.2 %, averaging 118.3 % at the experiment site. The results revealed that compensation depth is favorable in fish avoidance of TDG supersaturation. The survival rate of the experimental fish at the surface was lower than for those at the 0-3 m water depth. The survival rates of Ctenopharyngodon idella, Hypophthalmichthys molitrix, and Cirrhinus molitorella at the surface were only 30 %, 47.5 %, and 70 %, respectively, while at the 0-3 m water depth, the survival rates were 97.5 %, 87.5 %, and 87.5 %, respectively. Additionally, the survival rate of fish was related to their preferred water depth. The bubble trauma scores of the experimental fish in TDG supersaturated water significantly increased with exposure time and significantly decreased after recovery in freshwater. The relative and absolute critical swimming speed (U crit ) of Ctenopharyngodon idella ranged from 10.91 to 12.98 BL/s and 83.3-102.9 cm/s respectively, and there were no significant changes in the U crit with increasing TDG supersaturation exposure.
Accounting for interspecies and intraspecies variation in swimming performance for fish passage solutions
Across the globe, there are millions of in‐stream structures that fragment the world's river networks, acting as barriers that can impede the movements of fish. Designing effective solutions to accommodate fish communities requires information about the swimming abilities and behaviours of all species. This should account for different swimming modes, abilities, behaviours, and niches. We investigated the swimming speeds of nine migratory New Zealand species to assess both inter‐ and intraspecies variation. We then calculated maximum traversable speeds for culverts of a given length, based on the endurance abilities of our lowest performing species ( Galaxias maculatus ). Our findings reveal significant inter‐ and intraspecies variation in swimming speeds. Among the species studied, Galaxias brevipinnis, Galaxias argenteus, and Galaxias postvectis were the strongest swimmers. In contrast, Galaxias maculatus was one of the weakest swimmers. Body length positively correlated with U max indicating that fish passage barriers select against the weakest swimming species, as well as smaller individuals within a species. Maximum water speeds in a culvert must be lower than 0.3 m s −1, the previously assumed standard rule‐of‐thumb for New Zealand, to provide adequate passage for a high proportion of a weak‐swimming indicator species ( Galaxias maculatus ). Synthesis and applications. Previous maximum traversable water speeds for fish passage designs have been based on average swimming ability, but this approach only enables fish that are better than the average swimmers of their species to overcome barriers. This study highlights the importance of evidence‐based designs for successful fish passage solutions to account for the ability of all fish. By considering differences between and within species, rather than assuming a ‘one‐size‐fits‐all’ approach we can develop more effective passage solutions that better preserve fish communities.
Application of Conservation Genomics to Investigate the Role of Pathogens on the Migration of Sea‐Run Brown Trout (Salmo trutta)
Pathogens play a key role in individual function and the dynamics of wild populations, but the link between pathogens and individual performance has rarely been investigated in the wild. Migrating salmonids offer an ideal study system to investigate how infection with pathogens affects performance given that climate change and fish farming portend increasing prevalence of pathogens in wild populations. To test for effects of pathogen burden on the performance of a migrating salmonid, we paired data from individual brown trout tagged with acoustic accelerometer transmitters and gill biopsies to investigate how pathogen infection affected whole animal activity during the spawning migration. Generalised additive models fitted to the acceleration data revealed individual and temporal variation in acceleration as expected, but also provided a significant effect of relative infection burden on acceleration. However, when linking this pathogen‐specific effect to a relevant bioenergetic change, it was evident that the effect had little impact on the exercise‐related oxygen consumption at the individual level, especially in cases where fish were not exerting high exercise activity. The results are a powerful example of how pairing non‐lethal biopsies with individual tracking technologies can be used to assess how pathogens impact fish in situ.
Effects of acute suspended sediment exposure on the swimming and schooling performance of imperilled Redside Dace (Clinostomus elongatus)
Urbanization is a widespread threat to freshwater ecosystems. After rainfall, urban streams often experience unnaturally fast water flows and acute increases in suspended sediment due to the high degree of adjacent impervious land surface. Suspended sediments may negatively affect fishes by impairing respiration, and reduced water clarity may also affect social behaviours such as schooling that are dependent on visual cues. Given these two mechanisms of harm, suspended sediments may therefore exacerbate the difficulty of swimming at high water velocities. We tested this idea using imperilled Redside Dace ( Clinostomus elongatus) to examine the consequences of suspended sediment on swimming performance and schooling behaviour. Using individual fish, we assayed swimming performance (standard critical swim speed test) and tail beat frequency and amplitude under a range of ecologically relevant sediment concentrations. Next, we measured the impact of sediment on the cohesion and polarization of schools. Swimming performance of individual fish was not affected by suspended sediment levels we examined. School polarization was positively correlated with water flow overall and at the fastest flows we tested; schools were more polarized when exposed to sediment. School cohesion decreased with increasing flows and was unaffected by the suspended sediment levels we examined. Our results collectively suggest that swimming performance of Redside Dace may be resilient to ecologically relevant acute suspended sediment exposure.
Type 2 Diabetes Induces Mitochondrial Dysfunction in Zebrafish Skeletal Muscle Leading to Diabetic Myopathy via the miR-139-5p/NAMPT Pathway
Type 2 diabetes mellitus (T2DM) is a common metabolic disease that is frequently accompanied by multiple complications, including diabetic myopathy, a muscle disorder that is mainly manifested as decreased muscle function and reduced muscle mass. Diabetic myopathy is a relatively common complication among patients with diabetes that is mainly attributed to mitochondrial dysfunction. Therefore, we investigated the mechanisms underlying diabetic myopathy development, focusing on the role of microRNAs (miRs). Zebrafish were fed a high-sugar diet for 8 weeks and immersed in a glucose solution to establish a model of T2DM. Notably, the fish exhibited impaired blood glucose homeostasis, increased lipid accumulation in the skeletal muscles, and decreased insulin levels in the skeletal muscle. Additionally, we observed various symptoms of diabetic myopathy, including a decreased cross-sectional area of skeletal muscle fibers, increased skeletal muscle fibrosis, a significant decline in exercise capacity, and a significant decrease in mitochondrial respiratory function. Mechanistically, bioinformatic analysis combined with various molecular analyses showed that the miR-139-5p/NAMPT pathway was involved in long-term high-glucose-induced mitochondrial dysfunction in the skeletal muscle, leading to diabetic myopathy. Conclusively, this study provides a basis for the development of novel strategies for the prevention and treatment of diabetic myopathy.
Swimming kinematics of rainbow trout behind a 3× 5 cylinder array: a computationally driven experimental approach to understanding fish locomotion
Fish in the wild often contend with complex flows that are produced by natural and artificial structures. Research into fish interactions with turbulence often investigates metrics such as turbulent kinetic energy (TKE) or fish positional location, with less focus on the specific interactions between vortex organization and body swimming kinematics. Here, we compared the swimming kinematics of rainbow trout (Oncorhynchus mykiss) holding station in flows produced by two different 3×5 cylinder arrays. We systematically utilized computational fluid dynamics to identify one array that produced a Kármán vortex street with high vortex periodicity (KVS array) and another that produced low periodicity, similar to a parallel vortex street (PVS array), both validated with particle image velocimetry. The only difference in swimming kinematics between cylinder arrays was an increased tail beat amplitude in the KVS array. In both cylinder arrays, the tail beat frequency decreased and snout amplitude increased compared with the freestream. The center of mass amplitude was greater in the PVS array than in only the freestream, however, suggesting some buffeting of the body by the fluid. Notably, we did not observe Kármán gaiting in the KVS array as in previous studies. We hypothesize that this is because (1) vorticity was dissipated in the region where fish held station or (2) vortices were in-line rather than staggered. These results are the first to quantify the kinematics and behavior of fishes swimming in the wake of multiple cylinder arrays, which has important implications for biomechanics, fluid dynamics and fisheries management.
Swimming at Increasing Speeds in Steady and Unsteady Flows of Atlantic Salmon Salmo salar: Oxygen Consumption, Locomotory Behaviour and Overall Dynamic Body Acceleration
Captive breeding and stocking are commonly employed strategies for enhancing fisheries and conserving endangered fish species. However, hatchery-raised fish often exhibit reduced performance in the wild, displaying alterations in physiological, morphological, and behavioral traits. We tested for differences in swimming capacity and metabolic traits between wild and hatchery-reared individuals of the Spanish toothcarp (Aphanius iberus) from 2 different populations. Furthermore, we experimentally tested if these changes translated into fitness differences after their stocking into the wild. There were significant differences in swimming capacity and metabolic traits between wild and hatchery-reared individuals and also between the 2 populations. Captive-bred individuals displayed consistently lower metabolic rates than wild individuals from the same population (30–76% lower). Critical swimming speed rather differed between the 2 populations. Sex-specific differences were observed in maximum and standard metabolic rates, with wild individuals and females generally exhibiting higher values but with some exceptions. During a 3-month experiment, survival rates did not significantly differ between wild and captive-bred fish. Captive-bred individuals started smaller but exhibited rapid growth during the experiment. Initially, larger captive-bred fish had lower body conditions than their wild counterparts, but these differences progressively diminished. In summary, captive-bred individuals of this fish species showed lower metabolic rates, although the differences with wild individuals slightly depended on sex and size.
Effects of exercise training on the external morphology, growth performance, swimming ability, body composition and metabolism of juvenile black seabream Acanthopagrus schlegelii
Respiratory plasticity is a beneficial response to chronic hypoxia in fish. Red drum, a teleost that commonly experiences hypoxia in the Gulf of Mexico, have shown respiratory plasticity following sublethal hypoxia exposure as juveniles, but implications of hypoxia exposure during development are unknown. We exposed red drum embryos to hypoxia (40% air saturation) or normoxia (100% air saturation) for 3 days post fertilization (dpf). This time frame encompasses hatch and exogenous feeding. At 3 dpf, there was no difference in survival or changes in size. After the 3-day hypoxia exposure, all larvae were moved and reared in common normoxic conditions. Fish were reared for ∼3 months and effects of the developmental hypoxia exposure on swim performance and whole-animal aerobic metabolism were measured. We used a cross design wherein fish from normoxia (N=24) were exercised in swim tunnels in both hypoxia (40%, n=12) and normoxia (100%, n=12) conditions, and likewise for hypoxia-exposed fish (n=10 in each group). Oxygen consumption, critical swim speed (Ucrit), critical oxygen threshold (Pcrit) and mitochondrial respiration were measured. Hypoxia-exposed fish had higher aerobic scope, maximum metabolic rate, and higher liver mitochondrial efficiency relative to control fish in normoxia. Interestingly, hypoxia-exposed fish showed increased hypoxia sensitivity (higher Pcrit) and recruited burst swimming at lower swim speeds relative to control fish. These data provide evidence that early hypoxia exposure leads to a complex response in later life.
Creatine and L-carnitine attenuate muscular laminopathy in the LMNA mutation transgenic zebrafish
Lamin A/C gene (LMNA) mutations contribute to severe striated muscle laminopathies, affecting cardiac and skeletal muscles, with limited treatment options. In this study, we delve into the investigations of five distinct LMNA mutations, including three novel variants and two pathogenic variants identified in patients with muscular laminopathy. Our approach employs zebrafish models to comprehensively study these variants. Transgenic zebrafish expressing wild-type LMNA and each mutation undergo extensive morphological profiling, swimming behavior assessments, muscle endurance evaluations, heartbeat measurement, and histopathological analysis of skeletal muscles. Additionally, these models serve as platform for focused drug screening. We explore the transcriptomic landscape through qPCR and RNAseq to unveil altered gene expression profiles in muscle tissues. Larvae of LMNA(L35P), LMNA(E358K), and LMNA(R453W) transgenic fish exhibit reduced swim speed compared to LMNA(WT) measured by DanioVision. All LMNA transgenic adult fish exhibit reduced swim speed compared to LMNA(WT) in T-maze. Moreover, all LMNA transgenic adult fish, except LMNA(E358K), display weaker muscle endurance than LMNA(WT) measured by swimming tunnel. Histochemical staining reveals decreased fiber size in all LMNA mutations transgenic fish, excluding LMNA(WT) fish. Interestingly, LMNA(A539V) and LMNA(E358K) exhibited elevated heartbeats. We recognize potential limitations with transgene overexpression and conducted association calculations to explore its effects on zebrafish phenotypes. Our results suggest lamin A/C overexpression may not directly impact mutant phenotypes, such as impaired swim speed, increased heart rates, or decreased muscle fiber diameter. Utilizing LMNA zebrafish models for drug screening, we identify l-carnitine treatment rescuing muscle endurance in LMNA(L35P) and creatine treatment reversing muscle endurance in LMNA(R453W) zebrafish models. Creatine activates AMPK and mTOR pathways, improving muscle endurance and swim speed in LMNA(R453W) fish. Transcriptomic profiling reveals upstream regulators and affected genes contributing to motor dysfunction, cardiac anomalies, and ion flux dysregulation in LMNA mutant transgenic fish. These findings faithfully mimic clinical manifestations of muscular laminopathies, including dysmorphism, early mortality, decreased fiber size, and muscle dysfunction in zebrafish. Furthermore, our drug screening results suggest l-carnitine and creatine treatments as potential rescuers of muscle endurance in LMNA(L35P) and LMNA(R453W) zebrafish models. Our study offers valuable insights into the future development of potential treatments for LMNA-related muscular laminopathy.
High water temperature significantly influences swimming performance of New Zealand migratory species
Anthropogenic structures in freshwater systems pose a significant threat by fragmenting habitats. Effective fish passage solutions must consider how environmental changes introduce variability into swimming performance. As temperature is considered the most important external factor influencing fish physiology, it is especially important to consider its effects on fish swimming performance. Even minor alterations in water properties, such as temperature and velocity, can profoundly affect fish metabolic demands, foraging behaviours, fitness and, consequently, swimming performance and passage success. In this study, we investigated the impact of varying water temperatures on the critical swimming speeds of four migratory New Zealand species. Our findings revealed a significant reduction in critical swimming speeds at higher water temperatures (26°C) compared to lower ones (8 and 15°C) for three out of four species (Galaxias maculatus, Galaxias brevipinnis and Gobiomorphus cotidianus). In contrast, Galaxias fasciatus exhibited no significant temperature-related changes in swimming performance, suggesting species-specific responses to temperature. The cold temperature treatment did not impact swimming performance for any of the studied species. As high water temperatures significantly reduce fish swimming performance, it is important to ensure that fish passage solutions are designed to accommodate a range of temperature changes, including spatial and temporal changes, ranging from diel to decadal fluctuations. Our research underscores the importance of incorporating temperature effects into fish passage models for habitat restoration, connectivity initiatives, and freshwater fish conservation. The influence of temperature on fish swimming performance can alter migration patterns and population dynamics, highlighting the need for adaptive conservation strategies. To ensure the resilience of freshwater ecosystems it is important to account for the impact of temperature on fish swimming performance, particularly in the context of a changing climate.
Acid-base disturbances and effects on oxygen uptake rates in Nile tilapia (Oreochromis niloticus) following acute and prolonged CO2 exposure
The maximum rate at which fish can take up oxygen from their environment to fuel aerobic metabolism is an important feature of their physiology and ecology. Methods to quantify maximum oxygen uptake rate ( Ṁ O 2 ), therefore, should reliably and reproducibly estimate the highest possible Ṁ O 2 by an individual or species under a given set of conditions (peak Ṁ O 2 ). This study determined peak Ṁ O 2 and its repeatability in Gulf killifish, Fundulus grandis, subjected to three methods to elevate metabolism: swimming at increasing water speeds, during recovery after an exhaustive chase, and after ingestion of a large meal. Estimates of peak Ṁ O 2 during swimming and after an exhaustive chase were repeatable across two trials, whereas peak Ṁ O 2 after feeding was not. Peak Ṁ O 2 determined by the three methods was significantly different from one another, being highest during swimming, lowest after an exhaustive chase, and intermediate after feeding. In addition, peak Ṁ O 2 during recovery from an exhaustive chase depended on the length of time of recovery: in nearly 60% of the trials, values within the first hour of the chase were lower than those measured later. A novel and important finding was that an individual's peak Ṁ O 2 was not repeatable when compared across methods. Therefore, the peak Ṁ O 2 estimated for a group of fish, as well as the ranking of individual Ṁ O 2 within that group, depends on the method used to elevate aerobic metabolism.
Differing physiological performance of coexisting cool-and warmwater fish species under heatwaves in the Midwestern United States
Heatwaves are becoming more frequent and intensified with climate change. Freshwater ecosystems are among the most threatened, within which, differing responses between cool- and warmwater species to heatwaves can lead to fundamental changes in communities. Physiological experiments can identify potential mechanisms underlying the impacts of such heatwaves on fish communities. In the current study, we quantified the oxygen consumption rate, aerobic scope and swimming performance of cool- and warmwater fish species following the simulation of short-term heatwaves currently occurring in streams in the Midwestern United States. The coolwater predator walleye (Sander vitreus) showed clear thermal disadvantages relative to the warmwater predator largemouth bass (Micropterus salmoides), based on a high metabolic cost during the heatwave, low metabolic activity when encountering prey, and reduced swimming performance following the heatwave. Largemouth bass also showed a thermal advantage relative to the warmwater prey fathead minnow (Pimephales promelas) related to swimming performance and energetic costs, highlighting differing thermal responses between predators and prey. This study demonstrates the importance of considering short-term extreme thermal events in the response of aquatic communities to climate stressors.
Assessment of swim endurance and swim behavior in adult zebrafish
Many aquatic networks are fragmented by road crossing structures; remediating these barriers to allow fish passage is critical to restoring connectivity. Maximizing connectivity requires effective barrier identification and prioritization, but many barrier prioritization efforts do not consider swimming capabilities of target species. Given the many potential barriers within watersheds, inventory efforts integrating species-specific swimming speeds into rapid assessment protocols may allow for more accurate barrier removal prioritization. In this study, we demonstrate an approach for integrating fish swimming speeds into rapid barrier assessment and illustrate its utility via two case studies. We measured critical swimming speeds (Ucrit) of two stream-resident fish species with very different swimming modes: Yoknapatawpha Darter (Etheostoma faulkneri), an at-risk species whose current distribution is restricted to highly degraded habitat, and Bluehead Chub (Nocomis leptocephalus), an important host species for the federally endangered Carolina Heelsplitter mussel (Lasmigona decorata). We assessed potential barriers for Yoknapatawpha Darters in the Mississippi-Yocona River watershed, and Bluehead Chubs in the Stevens Creek watershed, South Carolina, USA. We integrated Ucrit into the Southeast Aquatic Resources Partnership (SARP) barrier assessment protocol by estimating the proportion of individuals per species swimming at least as fast as the current through the assessed structures. Integrating Ucrit estimates into the SARP protocol considerably increased barrier severity estimates and rankings only for Yoknapatawpha Darters in the Yocona River watershed. These results indicate the importance of including species-specific swimming abilities in rapid barrier assessments and the importance of species-watershed contexts in estimating where swimming speed information might be most important. Our method has broad application for those working to identify barriers more realistically to improve species-specific fish passage. This work represents a next step in improving rapid barrier assessments and could be improved by investigating how results change with different measurements of swimming abilities and structure characteristics.
Energy conservation by collective movement in schooling fish
Many animals moving through fluids exhibit highly coordinated group movement that is thought to reduce the cost of locomotion. However, direct energetic measurements demonstrating the energy-saving benefits of fluid-mediated collective movements remain elusive. By characterizing both aerobic and anaerobic metabolic energy contributions in schools of giant danio ( Devario aequipinnatus ), we discovered that fish schools have a concave upward shaped metabolism–speed curve, with a minimum metabolic cost at ~1 body length s -1. We demonstrate that fish schools reduce total energy expenditure (TEE) per tail beat by up to 56% compared to solitary fish. When reaching their maximum sustained swimming speed, fish swimming in schools had a 44% higher maximum aerobic performance and used 65% less non-aerobic energy compared to solitary individuals, which lowered the TEE and total cost of transport by up to 53%, near the lowest recorded for any aquatic organism. Fish in schools also recovered from exercise 43% faster than solitary fish. The non-aerobic energetic savings that occur when fish in schools actively swim at high speed can considerably improve both peak and repeated performance which is likely to be beneficial for evading predators. These energetic savings may underlie the prevalence of coordinated group locomotion in fishes.
Fish can use coordinated fin motions to recapture their own vortex wake energy
During swimming, many fishes use pectoral fins for propulsion and, in the process, move substantial amounts of water rearward. However, the effect that this upstream wake has on the caudal fin remains largely unexplored. By coordinating motions of the caudal fin with the pectoral fins, fishes have the potential to create constructive flow interactions which may act to partially recapture the upstream energy lost in the pectoral fin wake. Using experimentally derived velocity and pressure fields for the silver mojarra ( Eucinostomus argenteus ), we show that pectoral–caudal fin (PCF) coordination enables the circulation and interception of pectoral fin wake vortices by the caudal fin. This acts to transfer energy to the caudal fin and enhance its hydrodynamic efficiency at swimming speeds where this behaviour occurs. We also find that mojarras commonly use PCF coordination in nature. The results offer new insights into the evolutionary drivers and behavioural plasticity of fish swimming as well as for developing more capable bioinspired underwater vehicles.
Improving the Aerobic Capacity in Fingerlings of European Sea Bass (Dicentrarchus labrax) through Moderate and Sustained Exercise: A Metabolic Approach
Sustained swimming induces beneficial effects on growth and energy metabolism in some fish species. However, the absence of a standardized exercise regimen that guarantees an optimal response to physical activity is due to the anatomical, behavioral, and physiological differences among species, and the different conditions of tests applied, which are especially notable for the early stages of cultured species. The objective of this study was to assess the growth and metabolic responses of European sea bass submitted to continuous and moderate exercise exposure, selecting a practical swimming speed from swimming tests of groups of five fingerlings. The exercise-effects trial was carried out with 600 sea bass fingerlings (3–5 g body weight) distributed in two groups (control: voluntary swimming; exercised: under sustained swimming at 1.5 body lengths·s−1). After 6 weeks, growth parameters and proximal composition of both muscles were not altered by sustained swimming, but an increased synthetic capacity (increased RNA/DNA ratio) and more efficient use of proteins (decreased ΔN15) were observed in white muscle. The gene expression of mitochondrial proteins in white and red muscle was not affected by exercise, except for ucp3, which increased. The increase of UCP3 and Cox4 protein expression, as well as the higher COX/CS ratio of enzyme activity in white muscle, pointed out an enhanced oxidative capacity in this tissue during sustained swimming. In the protein expression of red muscle, only CS increased. All these metabolic adaptations to sustained exercise were also reflected in an enhanced maximum metabolic rate (MMR) with higher aerobic scope (AMS) of exercised fish in comparison to the non-trained fish, during a swimming test. These results demonstrated that moderate sustained swimming applied to sea bass fingerlings can improve the physical fitness of individuals through the enhancement of their aerobic capacities.
RoboTwin: A Platform to Study Hydrodynamic Interactions in Schooling Fish
By living and moving in groups, fish can gain many benefits, such as heightened predator detection, greater hunting efficiency, more accurate environmental sensing, and energy saving. Although the benefits of hydrodynamic interactions in schooling fish have drawn growing interest in fields such as biology, physics, and engineering, and multiple hypotheses for how such benefits may arise have been proposed, it is still largely unknown which mechanisms fish employ to obtain hydrodynamic benefits, such as increased thrust or improved movement efficiency. One main bottleneck has been the difficulty in collecting detailed sensory information, corresponding locomotory responses, and hydrodynamic information from real schooling fish.
Critical swimming speed of juvenile rockfishes (Sebastes) following long-and short-term exposures to acidification and deoxygenation
Reef fishes in the California Current Ecosystem have evolved in habitats affected by seasonally variable, episodic upwelling of high pCO2 (acidified, low pH) and low dissolved oxygen (deoxygenated) water, which suggests that these fishes might exhibit resilience to ocean acidification (OA) and deoxygenation. Yet, how the fitness of these fish are affected by natural variability in pH and DO over short time scales remains poorly understood, as do the effects of longer-term trends in pH and DO driven by climate change. We conducted a complementary suite of experiments to study the effects of acidification and deoxygenation on the critical swimming speed (Ucrit) of juvenile copper (Sebastes caurinus) and black (S. melanops) rockfish collected from nearshore habitats in an ocean acidification “hotspot” off Northern California. We consistently observed that Ucrit declined more strongly in response to deoxygenation than to acidification, at least under ranges of these stressors consistent with current conditions and plausible future scenarios, and that reduction in swimming performance reflected additive rather than synergistic responses to concurrent exposure. Reductions in swimming performance manifested quickly–on the scale of hours–in response to exposure to elevated pCO2/reduced DO, yet are reversible: swimming performance of juvenile rockfish recovers within a matter of days, and perhaps much more quickly, after acidified/deoxygenated conditions have subsided. Insights from this study address potential effects of variability in upwelling intensity at event and seasonal scales for nearshore rockfishes and contribute to our understanding of fish responses to future ocean conditions driven by ongoing climate change.
Comparative analysis of hypoxia tolerance, growth performance, and locomotor activity of Seriola lalandi and Seriolella violacea juveniles
To ensure optimal feed intake, growth, and general fish health in aquaculture sea cages, interactions between drivers that affect oxygen conditions need to be understood. The main drivers are oxygen consumption and water exchange, caused by flow through the cage. Swimming energetics in rainbow trout (Oncorhynchus mykiss) in normoxia and hypoxia at 10, 15, and 20 °C were determined. Using the determinations, a conceptual model of oxygen conditions within sea cages was created. By applying the model to a case study, results show that with a temperature increase of 10 °C, oxygen concentration will decrease three times faster. To maintain optimal oxygen concentration within the cage, the flow velocity must be increased by a factor of 3.7. The model is highly relevant for current farms since the model predictions can explain why and when suboptimal conditions occur within the cages. Using the same method, the model can be used to estimate the suitability of potential new aquaculture sites.
Regular exercise attenuates alcoholic myopathy in zebrafish by modulating mitochondrial homeostasis
Alcoholic myopathy is caused by chronic consumption of alcohol (ethanol) and is characterized by weakness and atrophy of skeletal muscle. Regular exercise is one of the important ways to prevent or alleviate skeletal muscle myopathy. However, the beneficial effects and the exact mechanisms underlying regular exercise on alcohol myopathy remain unclear. In this study, a model of alcoholic myopathy was established using zebrafish soaked in 0.5% ethanol. Additionally, these zebrafish were intervened to swim for 8 weeks at an exercise intensity of 30% of the absolute critical swimming speed (Ucrit), aiming to explore the beneficial effects and underlying mechanisms of regular exercise on alcoholic myopathy. This study found that regular exercise inhibited protein degradation, improved locomotion ability, and increased muscle fiber cross-sectional area (CSA) in ethanol-treated zebrafish. In addition, regular exercise increases the functional activity of mitochondrial respiratory chain (MRC) complexes and upregulates the expression levels of MRC complexes. Regular exercise can also improve oxidative stress and mitochondrial dynamics in zebrafish skeletal muscle induced by ethanol. Additionally, regular exercise can activate mitochondrial biogenesis and inhibit mitochondrial unfolded protein response (UPRmt). Together, our results suggest regular exercise is an effective intervention strategy to improve mitochondrial homeostasis to attenuate alcoholic myopathy.
Non-lethal sampling for assessment of mitochondrial function does not affect metabolic rate and swimming performance
A fundamental issue in the metabolic field is whether it is possible to understand underlying mechanisms that characterize individual variation. Whole-animal performance relies on mitochondrial function as it produces energy for cellular processes. However, our lack of longitudinal measures to evaluate how mitochondrial function can change within and among individuals and with environmental context makes it difficult to assess individual variation in mitochondrial traits. The aims of this study were to test the repeatability of muscle mitochondrial metabolism by performing two biopsies of red muscle, and to evaluate the effects of biopsies on whole-animal performance in goldfish Carassius auratus. Our results show that basal mitochondrial respiration and net phosphorylation efficiency are repeatable at 14-day intervals. We also show that swimming performance (optimal cost of transport and critical swimming speed) was repeatable in biopsied fish, whereas the repeatability of individual oxygen consumption (standard and maximal metabolic rates) seemed unstable over time. However, we noted that the means of individual and mitochondrial traits did not change over time in biopsied fish. This study shows that muscle biopsies allow the measurement of mitochondrial metabolism without sacrificing animals and that two muscle biopsies 14 days apart affect the intraspecific variation in fish performance without affecting average performance of individuals. This article is part of the theme issue ‘The evolutionary significance of variation in metabolic rates’.
Undulating Seal Whiskers Evolved Optimal Wavelength‐to‐Diameter Ratio for Efficient Reduction in Vortex‐Induced Vibrations
How two-chambered hearts in basal vertebrates have evolved from single-chamber hearts found in ancestral chordates remains unclear. Here, we show that the teleost sinus venosus (SV) is a chamber-like vessel comprised of an outer layer of smooth muscle cells. We find that in adult zebrafish nr2f1a mutants, which lack atria, the SV comes to physically resemble the thicker bulbus arteriosus (BA) at the arterial pole of the heart through an adaptive, hypertensive response involving smooth muscle proliferation due to aberrant hemodynamic flow. Single cell transcriptomics show that smooth muscle and endothelial cell populations within the adapting SV also take on arterial signatures. Bulk transcriptomics of the blood sinuses flanking the tunicate heart reinforce a model of greater equivalency in ancestral chordate BA and SV precursors. Our data simultaneously reveal that secondary complications from congenital heart defects can develop in adult zebrafish similar to those in humans and that the foundation of equivalency between flanking auxiliary vessels may remain latent within basal vertebrate hearts. Nr2fs are conserved transcription factors that regulate atrial chamber and venous development. Here, the authors use adult zebrafish nr2f1a mutants to investigate compensatory remodeling of the inflow tract and hypotheses of cardiac evolution.
River zebrafish combine behavioral plasticity and generalized morphology with specialized sensory and metabolic physiology to survive in a challenging environment
Phenotypes that allow animals to detect, weather, and predict changes efficiently are essential for survival in fluctuating environments. Some phenotypes may remain specialized to suit an environment perfectly, while others become more plastic or generalized, shifting flexibly to match current context or adopting a form that can utilize a wide range of contexts. Here, we tested the differences in behavior, morphology, sensory and metabolic physiology between wild zebrafish (Danio rerio) in highly variable fast-flowing rivers and still-water sites. We found that river zebrafish moved at higher velocities than did still-water fish, had lower oxygen demands, and responded less vigorously to small changes in flow rate, as we might expect for fish that are well-suited to high-flow environments. River zebrafish also had less streamlined bodies and were more behaviorally plastic than were still-water zebrafish, both features that may make them better-suited to a transitional lifestyle. Our results suggest that zebrafish use distinct sensory mechanisms and metabolic physiology to reduce energetic costs of living in fast-flowing water while relying on morphology and behavior to create flexible solutions to a challenging habitat. Insights on animals’ reliance on traits with different outcomes provide a framework to better understand their survival in future environmental fluctuations.
Under the sea: How can we use heart rate and accelerometers to remotely assess fish welfare in salmon aquaculture?
Objective Altered temperature and dissolved oxygen (DO) regimes in the tailwaters below dams can cause stress to fish. Despite their widespread distribution in rivers across North America, Freshwater Drum Aplodinotus grunniens have received little attention relative to the effects of these potential stressors. Quantifying fish swimming performance and kinematics in simulated tailwater conditions can help to determine how riverine species are affected by dam water releases, with the ultimate goal of identifying improved management strategies for these systems. Methods We quantified Freshwater Drum swimming performance and kinematics by measuring critical swimming speed (in both relative [RUcrit; body lengths/s] and absolute [AUcrit; cm/s] units), tailbeat frequency, tailbeat amplitude, and Strouhal's number under all combinations of low-DO (4 mg/L), normoxic (9 mg/L), and high-DO (14 mg/L) conditions at low (10°C), intermediate (20°C), and warm (30°C) water temperatures using both 90- and 850-L swim flumes. Result Dissolved oxygen at these concentrations did not affect swimming performance. The effect of temperature on swimming performance depended on fish size; RUcrit, AUcrit, and tailbeat frequency decreased with fish length but increased with temperature. In contrast, tailbeat amplitude increased with fish length but did not differ across temperatures. Conclusion These results suggest that acute low- and high-DO exposure within the tested range may not affect swimming performance or kinematics. However, the influence of temperature on Freshwater Drum swimming performance suggests that the ability of fish to hold position in a tailrace or to successfully pass upstream of a dam may vary seasonally and may depend on the depth from which water is released from a reservoir, as release depth determines the water temperature.
Progenitor-derived glia are required for spinal cord regeneration in zebrafish
Unlike mammals, adult zebrafish undergo spontaneous recovery after major spinal cord injury. Whereas reactive gliosis presents a roadblock for mammalian spinal cord repair, glial cells in zebrafish elicit pro-regenerative bridging functions after injury. Here, we perform genetic lineage tracing, assessment of regulatory sequences and inducible cell ablation to define mechanisms that direct the molecular and cellular responses of glial cells after spinal cord injury in adult zebrafish. Using a newly generated CreERT2 transgenic line, we show that the cells directing expression of the bridging glial marker ctgfa give rise to regenerating glia after injury, with negligible contribution to either neuronal or oligodendrocyte lineages. A 1 kb sequence upstream of the ctgfa gene was sufficient to direct expression in early bridging glia after injury. Finally, ablation of ctgfa-expressing cells using a transgenic nitroreductase strategy impaired glial bridging and recovery of swim behavior after injury. This study identifies key regulatory features, cellular progeny, and requirements of glial cells during innate spinal cord regeneration.
Ontogenetic Plasticity in Shoaling Behavior in a Forage Fish under Warming
Synopsis Shoaling behavior is known to increase survival rates during attacks from predators, minimize foraging time, favor mating, and potentially increase locomotor efficiency. The onset of shoaling typically occurs during the larval phase, but it is unclear how it may improve across ontogenetic stages in forage fishes. Warming is known to increase metabolic rates during locomotion in solitary fish, and shoaling species may adjust their collective behavior to offset the elevated costs of swimming at higher temperatures. In this study, we quantified the effects of warming on shoaling performance across the ontogeny of a small forage fish, zebrafish (Danio rerio) at different speeds. Shoals of larval, juvenile, and adult zebrafish were acclimated at two temperatures (28°C and 32°C), and metabolic rates were quantified prior to and following nonexhaustive exercise at high speed. Shoals of five individuals were filmed in a flow tank to analyze the kinematics of collective movement. We found that zebrafish improve shoaling swimming performance from larvae to juveniles to adults. In particular, shoals become more cohesive, and both tail beat frequency (TBF) and head-to-tail amplitude decrease with ontogeny. Early life stages have higher thermal sensitivity in metabolic rates and TBF especially at high speeds, when compared to adults. Our study shows that shoaling behavior and thermal sensitivity improve as zebrafish shift from larval to juvenile to adult stages.
Aerobic response to thermal stress across ontogeny and habitats in a teleost fish
Near-future climate change projections predict an increase in sea surface temperature that is expected to have significant and rapid effects on marine ectotherms, potentially affecting a number of critical life processes. Also, some habitats undergo more thermal variability than others and the inhabitants thereof must be more tolerant to acute periods of extreme temperatures. Mitigation of these outcomes may occur through acclimation, plasticity, or adaptation, although the rate and extent of a species' ability to adjust to warmer temperatures is largely unknown, specifically as it pertains to effects on various performance metrics in fishes that inhabit multiple habitats throughout ontogenetic stages. Here, the thermal tolerance and aerobic performance of schoolmaster snapper (Lutjanus apodus Walbaum, 1792) collected from two different habitats were experimentally assessed under different warming scenarios (temperature treatments = 30, 33, 35, 36° C) to assess vulnerability to an imminently changing thermal habitat. Larger subadult and adult fish collected from a 12 m deep coral reef exhibited a lower critical thermal maximum (CTmax ) compared to smaller juvenile fish collected from a 1 m deep mangrove creek. However, CTmax of the creek-sampled fish was only 2° C above the maximum water temperature measured in the habitat from which they were collected, compared to a CTmax that was 8° C higher in the reef-sampled fish, resulting in a wider thermal safety margin at the reef site. A GLM showed a marginally significant effect of temperature treatment on resting metabolic rate (RMR) but there were no effects on any of the tested factors on maximum metabolic rate (MMR) or absolute aerobic scope (AAS). Post-hoc tests revealed that RMR was significantly higher for creek-collected fish at the 36° C treatment and significantly higher for reef-collected fish at 35° C. Swimming performance (measured by critical swimming speed [Ucrit ]) was significantly lower at the highest temperature treatment for creek-collected fish and trended down with each successive increase in temperature treatment for reef-collected fish. These results show that metabolic rate and swimming performance responses to thermal challenges are somewhat consistent across collection habitats, and this species may be susceptible to unique types of thermal risk depending on its habitat. We show the importance of intraspecific studies that couple habitat profiles and performance metrics to better understand possible outcomes under thermal stress. This article is protected by copyright. All rights reserved.
From metabolism to behaviour–Multilevel effects of environmental methamphetamine concentrations on fish
Hydropower development can significantly mitigate climate change and reduce carbon emissions, but it can also have substantial negative impacts on river environments and fish biodiversity. Fish passage facilities are built to ensure sustainable hydropower development and the biodiversity of fish populations. The locations of the entrances to these facilities play a key role in their efficiency. This study presents a reliable approach that combines the swimming ability of fish and a numerical flow field simulation to determine the optimal location for a fish passage facility entrance. In this study, we used the Gujun Reservoir upstream of the Yangtze River as a case study. A field experiment was conducted, and the swimming abilities of eight endemic fish species in the upstream region of the Yangtze River were measured. Among the tested species, the fastest induced swimming speed (0.14 m/s) was achieved by Glyptothorax sinense, while the slowest critical swimming speed (0.30 m/s) was observed for Paracobitis potanini. We propose that the velocity near the fish passage facility entrance should be higher than the maximum induced swimming speed and lower than the minimum critical swimming speed, making the suitable range between 0.14 and 0.30 m/s. On this basis, velocity fields 500 m downstream of the dam of the Gujun Reservoir under 4 operating conditions with discharge flows of 5.7 m3/s, 23.3 m3/s, 32.5 m3/s, and 41.1 m3/s were calculated. The results showed that the flow field variation downstream of the dam was between 0.1 and 0.9 m/s. After comparing the suitable areas for the target species, the left bank at location 2 was recommended as the optimal location for the fish passage facility entrance in the Gujun Reservoir.
Does swimming activity influence gas bubble trauma in fish?
Total dissolved gas (TDG) supersaturation from sources such as hydroelectric dams can cause harmful bubble growth in the tissues of aquatic animals, known as gas bubble trauma (GBT). Locomotion is known to exacerbate bubble growth in tissues during decompression under certain conditions (such as in diving animals), possibly because of increased bubble nucleation. As with decompression sickness, GBT is caused by the supersaturation of tissues with gas, and thus we hypothesize that locomotion promotes bubble nucleation in the tissues of fish exposed to TDG supersaturation. Many previous laboratory studies have tested the effects of TDG on fish exposed to low‐velocity, non‐directional flow, whereas fish in field conditions are exposed to higher‐velocity flows and are likely more active. Therefore, it is important to understand the effects of locomotion on GBT to apply laboratory results to active fish in field conditions. We exposed rainbow trout ( Oncorhynchus mykiss ) to either control (100% TDG) or TDG supersaturation (123% TDG) in either static or flowing water conditions (1.8 Bl/s) and recorded time to 50% loss of equilibrium (LOE). We observed no statistically significant difference in time to 50% LOE between flow conditions. Given the lack of statistically significant difference between static and flowing water, our findings indicate that results from GBT experiments on rainbow trout in non‐directional flow are applicable to more active individuals.
Intracellular taurine deficiency impairs cardiac contractility in rainbow trout (Oncorhynchus mykiss) without affecting aerobic performance
Taurine is a non-proteinogenic sulfonic acid found in high concentrations inside vertebrate cardiomyocytes and its movement across the sarcolemmal membrane is critical for cell volume regulation. Taurine deficiency is rare in mammals, where it impairs cardiac contractility and leads to congestive heart failure. In fish, cardiac taurine levels vary substantially between species and can decrease by up to 60% in response to environmental change but its contribution to cardiac function is understudied. We addressed this gap in knowledge by generating a taurine-deficient rainbow trout (Oncorhynchus mykiss) model using a feed enriched with 3% β-alanine to inhibit cellular taurine uptake. Cardiac taurine was reduced by 17% after 4 weeks with no effect on growth or condition factor. Taurine deficiency did not affect routine or maximum rates of O2 consumption, aerobic scope, or critical swimming speed in whole animals but cardiac contractility was significantly impaired. In isometrically contracting ventricular strip preparations, the force–frequency and extracellular Ca2+-sensitivity relationships were both shifted downward and maximum pacing frequency was significantly lower in β-alanine fed trout. Cardiac taurine deficiency reduces sarcoplasmic reticular Ca2+-ATPase activity in mammals and our results are consistent with such an effect in rainbow trout. Our data indicate that intracellular taurine contributes to the regulation of cardiac contractility in rainbow trout. Aerobic performance was unaffected in β-alanine-fed animals, but further study is needed to determine if more significant natural reductions in taurine may constrain performance under certain environmental conditions.
Use of telemetry sensors as a tool for health/welfare monitoring of European sea bass (Dicentrarchus labrax) in aquaculture
Significance Plastic individuals can buffer environmental changes, maintaining a stable performance across gradients. Plasticity is therefore thought to be particularly beneficial for the survival of wild populations that experience large environmental fluctuations, such as diel and seasonal temperature changes. Maintaining plasticity is widely assumed to be costly; however, empirical evidence demonstrating this cost is scarce. Here, we predict that if plasticity is costly, it would be readily lost in a stable environment, such as a laboratory. To test this, we measured a diverse range of phenotypic traits, spanning gene expression, physiology, and behavior, in wild and laboratory zebrafish acclimated to 15 temperatures. We show that laboratory fish have lost plasticity in many traits, demonstrating that maintaining plasticity carries a cost. Plasticity can allow organisms to maintain consistent performance across a wide range of environmental conditions. However, it remains largely unknown how costly plasticity is and whether a trade-off exists between plasticity and performance under optimal conditions. Biological rates generally increase with temperature, and to counter that effect, fish use physiological plasticity to adjust their biochemical and physiological functions. Zebrafish in the wild encounter large daily and seasonal temperature fluctuations, suggesting they should display high physiological plasticity. Conversely, laboratory zebrafish have been at optimal temperatures with low thermal fluctuations for over 150 generations. We treated this domestication as an evolution experiment and asked whether this has reduced the physiological plasticity of laboratory fish compared to their wild counterparts. We measured a diverse range of phenotypic traits, from gene expression through physiology to behavior, in wild and laboratory zebrafish acclimated to 15 temperatures from 10 °C to 38 °C. We show that adaptation to the laboratory environment has had major effects on all levels of biology. Laboratory fish show reduced plasticity and are thus less able to counter the direct effects of temperature on key traits like metabolic rates and thermal tolerance, and this difference is detectable down to gene expression level. Rapid selection for faster growth in stable laboratory environments appears to have carried with it a trade-off against physiological plasticity in captive zebrafish compared with their wild counterparts.
Experimental demonstration of exclusively passive feeding in the sea-turtle barnacle Chelonibia testudinaria (Linnaeus, 1758)(Cirripedia: Coronulidae)
Barnacles are sessile suspension feeders whose feeding efficiency and behavior is largely determined by the movement of water through their environment. Barnacles expend energy to feed actively in environments with low flow velocity, whereas they may feed passively at higher flow velocities, which is more efficient than active feeding. Many intertidal barnacles have been shown to switch between active and passive feeding modes as water velocities change, but little is known about the behavior of epibiotic species attached to mobile hosts, which are exposed to more consistent feeding currents. To assess the response of epibiotic barnacles to flow, laboratory-reared sea-turtle barnacles, Chelonibia testudinaria (Linnaeus, 1758), were subjected to a wide range of water velocities in both the presence and absence of food particles. Their behaviors were video-recorded and categorized using an automated behavior recognition algorithm compiled in R. Individuals of C. testudinaria only displayed passive feeding behavior, but did not feed at lowest test velocities. This species fed most at flow velocities between 25 cm s–1 and 40 cm s–1 (linear mixed effects model, F = 19.30, P < 0.001), a range that correlates well with the average swimming speed of two common host species, the loggerhead and green sea turtles, on which C. testudinaria resides. Chelonibia testudinaria displayed longer average feeding durations when food particles were absent than when food was abundant (linear mixed effects model, F = 11.76, P = 0.001), a result that is in line with the expectations of optimal foraging theory for suspension-feeding invertebrates. Lack of active feeding in this species may have evolved following the establishment of its epibiotic nature and may make this obligate epibiotic species entirely reliant on its hosts’ movements to provide a feeding current. This is the only barnacle species known to not facultatively switch between active and passive feeding modes.
Effect of food amount and temperature on growth rate and aerobic scope of juvenile chum salmon
Offshore migration of Pacific salmon Oncorhynchus spp. is partly triggered by increasing body size and high motility in the early stages of life. The survival of juvenile salmon may depend on their growth rate during the first few months in the sea, and this factor partly regulates the dynamics of adult populations. Here, we assessed the effects of water temperature and food availability on the growth of juvenile chum salmon O. keta. In addition, by combining the measurements of metabolic performance for growth and activity (Absolute Aerobic Scope: AAS) with a bioenergetics model, we estimated the energy allocation for different activities in the juveniles. Under high temperatures (14 °C), juveniles reared at low food levels (1% body weight) allocated less than half their energy for growth than those reared at high food levels (4% body weight). These findings suggest that high temperature and low food level constrain the growth of juveniles, providing an insight into the effect of the recent increase in warm and low-nutrient water masses on survival of juveniles and catches of adult chum salmon on the Pacific side of Honshu Island, Japan.
Relationships between male secondary sexual traits, physiological state and offspring viability in the three-spined stickleback
Sexual signals produced by males play a central role in sexual selection, but the relationship between these traits and the quality of the bearer are often ambiguous. Secondary sexual traits may represent genetic quality of the bearer, resulting in positive relationships with physiological state, or may be costly to produce, showing trade-off with physiological state. A number of studies have explored the relationships between secondary sexual traits and other functional traits, but few have studied their fitness consequences. We studied the link between diverse physiological traits and both morphological and behavioural sexual traits and examined how their interplay influences offspring viability in the three-spined stickleback. Male sticklebacks showing nest building and courtship behaviour were smaller than those not investing in reproductive activities. There was no evidence that the expression of red nuptial colouration and the quality of courtship behaviour of males are positively related to their metabolic rates, swim ability, oxidative damage and mtDNA copy number. However, individuals showing larger red nuptial colour areas had higher levels of oxidative DNA damage in their sperm. Male courtship behaviour and aggressiveness, but not red colour area, were good predictors of offspring hatching and survival. Our results suggest that, in our study population at the southern edge of the species’ distribution, sexual colouration of male sticklebacks was not a good indicator of their body state, but both courtship quality and aggressiveness during the courtship are reliable cues of their gamete quality, influencing the viability of their offspring. Thus, females that choose mates based on their courtship behaviour will have high fitness. In the study population, which represents a fast pace-of-life with high reproductive rate and short lifespan, sexual ornaments of males may not honestly signal their physiological and physical state because they invest at maximum in a single reproductive season despite high costs.
Cardioprotective responses to aerobic exercise-induced physiological hypertrophy in zebrafish heart
Herein, we aimed to establish an aerobic exercise-induced physiological myocardial hypertrophy zebrafish (Danio rerio) model and to explore the underlying molecular mechanism. After 4 weeks of aerobic exercise, the AMR and Ucrit of the zebrafish increased and the hearts were enlarged, with thickened myocardium, an increased number of myofilament attachment points in the Z-line, and increased compaction of mitochondrial cristae. We also found that the mTOR signaling pathway, angiogenesis, mitochondrial fusion, and fission event, and mitochondrial autophagy were associated with the adaptive changes in the heart during training. In addition, the increased mRNA expression of genes related to fatty acid oxidation and antioxidation suggested that the switch of energy metabolism and the maintenance of mitochondrial homeostasis induced cardiac physiological changes. Therefore, the zebrafish heart physiological hypertrophy model constructed in this study can be helpful in investigating the cardioprotective mechanisms in response to aerobic exercise.
Metabolic rate increases with acclimation temperature and is associated with mitochondrial function in some tissues of threespine stickleback
The metabolic rate (ṀO2) of eurythermal fishes changes in response to temperature, yet it is unclear how changes in mitochondrial function contribute to changes in ṀO2. We hypothesized that ṀO2 would increase with acclimation temperature in the threespine stickleback (Gasterosteus aculeatus) in parallel with metabolic remodeling at the cellular level but that changes in metabolism in some tissues, such as liver, would contribute more to changes in ṀO2 than others. Threespine stickleback were acclimated to 5, 12 and 20°C for 7 to 21 weeks. At each temperature, standard and maximum metabolic rate (SMR and MMR, respectively), and absolute aerobic scope (AAS) were quantified, along with mitochondrial respiration rates in liver, oxidative skeletal and cardiac muscles, and the maximal activity of citrate synthase (CS) and lactate dehydrogenase (LDH) in liver, and oxidative and glycolytic skeletal muscles. SMR, MMR and AAS increased with acclimation temperature, along with rates of mitochondrial phosphorylating respiration in all tissues. Low SMR and MMR at 5°C were associated with low or undetectable rates of mitochondrial complex II activity and a greater reliance on complex I activity in liver, oxidative skeletal muscle and heart. SMR was positively correlated with cytochrome c oxidase (CCO) activity in liver and oxidative muscle, but not mitochondrial proton leak, whereas MMR was positively correlated with CCO activity in liver. Overall, the results suggest that changes in ṀO2 in response to temperature are driven by changes in some aspects of mitochondrial function in some, but not all, tissues of threespine stickleback.
Alcohol Induces Zebrafish Skeletal Muscle Atrophy through HMGB1/TLR4/NF-κB Signaling
Excessive alcohol consumption can cause alcoholic myopathy, but the molecular mechanism is still unclear. In this study, zebrafish were exposed to 0.5% alcohol for eight weeks to investigate the effect of alcohol on skeletal muscle and its molecular mechanism. The results showed that the body length, body weight, cross-sectional area of the skeletal muscle fibers, Ucrit, and MO2max of the zebrafish were significantly decreased after alcohol exposure. The expression of markers of skeletal muscle atrophy and autophagy was increased, and the expression of P62 was significantly reduced. The content of ROS, the mRNA expression of sod1 and sod2, and the protein expression of Nox2 were significantly increased. In addition, we found that the inflammatory factors Il1β and Tnfα were significantly enriched in skeletal muscle, and the expression of the HMGB1/TLR4/NF-κB signaling axis was also significantly increased. In summary, in this study, we established a zebrafish model of alcohol-induced skeletal muscle atrophy and further elucidated its pathogenesis.
A tale of two fish tails: does a forked tail really perform better than a truncate tail when cruising?
Many fishes use their tail as the main thrust producer during swimming. This fin's diversity in shape and size influences its physical interactions with water as well as its ecological functions. Two distinct tail morphologies are common in bony fishes: flat, truncate tails which are best suited for fast accelerations via drag forces, and forked tails that promote economical, fast cruising by generating lift-based thrust. This assumption is based primarily on studies of the lunate caudal fin of Scombrids (i.e. tuna, mackerel), which is comparatively stiff and exhibits an airfoil-type cross-section. However, this is not representative of the more commonly observed and taxonomically widespread flexible forked tail, yet similar assumptions about economical cruising are widely accepted. Here, we present the first comparative experimental study of forked versus truncate tail shape and compare the fluid mechanical properties and energetics of two common nearshore fish species. We examined the hypothesis that forked tails provide a hydrodynamic advantage over truncate tails at typical cruising speeds. Using experimentally derived pressure fields, we show that the forked tail produces thrust via acceleration reaction forces like the truncate tail during cruising but at increased energetic costs. This reduced efficiency corresponds to differences in the performance of the two tail geometries and body kinematics to maintain similar overall thrust outputs. Our results offer insights into the benefits and tradeoffs of two common fish tail morphologies and shed light on the functional morphology of fish swimming to guide the development of bio-inspired underwater technologies.
Tag retention in and effects of passive integrated transponder tagging on survival and swimming performance of a small‐bodied darter
Fisheries biologists have been hesitant to use passive integrated transponder (PIT) tags in small‐bodied fishes (40–200 mm TL) such as darters (Percidae: Etheostomatinae) because of the fishes' size and potential effect on swimming performance. The authors used constant acceleration trials to evaluate the swimming performance of Arkansas darters Etheostoma cragini in control (no incision or tag), sham (incision and suture) or PIT tagged (surgically implanted 8 × 1.4 mm intra‐peritoneal PIT tag) treatments. Tag retention and fish survival were monitored for up to 199 days post‐tagging. Maximum swimming velocity did not differ between control, sham and PIT tag treatments, nor was maximum swimming velocity affected by the tagging procedure. Tag retention was 100%, and the overall survival of tagged fish was 88% in the swimming study, and 100% in the long‐term study, suggesting that small PIT tags are suitable for use in darters. The authors include a brief meta‐analysis on the results reported by 20 studies that PIT tagged small‐bodied fishes, representing 38 species and nine families of freshwater fish.
Ontogeny of swimming performance of hatchery‐reared post‐larvae and juvenile fish: a case of two threatened Mediterranean species
Swimming performance is a well‐established key physiological parameter of fish that is highly linked to their fitness in the wild. In the context of fish restocking purposes, it therefore appears crucial to study this specific behaviour. Here, the authors investigated intra and interspecies differences in the swimming performance of hatchery‐reared post‐larvae and juveniles belonging to two Mediterranean candidate threatened species, the common dentex, Dentex dentex (Sparidae), and the brown meagre, Sciaena umbra (Sciaenidae), with body sizes ranging from 8 to 37 mm total length (TL, from 24 to 58 days post‐hatch). The swimming abilities were estimated through the calculation of their critical swimming speed ( U crit ), their relative U crit and their Reynolds number ( R e ). Two different patterns were observed between D. dentex and S. umbra, showing a different effect of ontogeny on the performance of both species. The relative U crit of S. umbra decreased linearly through ontogeny, whereas the relative U crit and U crit of D. dentex increased linearly through the range of sizes tested. The ontogenetic change in U crit of S. umbra occurred in two stages: a first stage of sharp improvement and a second stage of a slow decrease in performance. Both stages were separated by a breakpoint that coincided with the appearance of a refusal to swim behaviour that occurred shortly after the end of metamorphosis and can potentially be associated with the establishment of this species sedentary behaviour. The swimming performance of both species showed ontogenetic differences. Sciaena umbra had the highest relative performance when its body sizes were the smallest, whereas D. dentex showed the highest relative performance when its body sizes were the largest. These results will be linked to future research on both of these species concerning their escape, exploratory and predatory behaviours, and for restocking purposes to draw a more realistic overview of hatchery‐reared juvenile performance. Knowledge of both species’ behavioural and swimming performance through ontogeny is important to consider when using hatchery‐reared fish juveniles for restocking, as size‐at‐release can have a large impact on fish survival and thus on restocking success.
The role of carbonic anhydrase-mediated tissue oxygen extraction in a marine teleost acclimated to hypoxia
With the growing prevalence of hypoxia (O2 levels ≤2 mg l−1) in aquatic and marine ecosystems, there is increasing interest in the adaptive mechanisms fish may employ to better their performance in stressful environments. Here, we investigated the contribution of a proposed strategy for enhancing tissue O2 extraction – plasma-accessible carbonic anhydrase (CA-IV) – under hypoxia in a species of estuarine fish (red drum, Sciaenops ocellatus) that thrives in fluctuating habitats. We predicted that hypoxia-acclimated fish would increase the prevalence of CA-IV in aerobically demanding tissues to confer more efficient tissue O2 extraction. Furthermore, we predicted the phenotypic changes to tissue O2 extraction that occur with hypoxia acclimation may improve respiratory and swim performance under 100% O2 conditions (i.e. normoxia) when compared with performance in fish that have not been acclimated to hypoxia. Interestingly, there were no significant differences in relative CA-IV mRNA expression, protein abundance or enzyme activity between the two treatments, suggesting CA-IV function is maintained under hypoxia. Likewise, respiratory performance of hypoxia-acclimated fish was similar to that of control fish when tested in normoxia. Critical swim speed (Ucrit) was significantly higher in hypoxia-acclimated fish but translated to marginal ecological benefits with an increase of ∼0.3 body lengths per second. Instead, hypoxia-acclimated fish may have relied more heavily on anaerobic metabolism during their swim trials, utilizing burst swimming 1.5 times longer than control fish. While the maintenance of CA-IV may still be an important contributor for hypoxia tolerance, our evidence suggests hypoxia-acclimated red drum are using other mechanisms to cope in an O2-depleted environment.
High-resolution post-release behaviour and recovery periods of two highly prized recreational sportfish: the blue marlin and sailfish
High recreational catch rates of istiophorid billfishes in the eastern tropical Pacific (ETP) have led to substantial eco-tourism derived economic benefits for the countries in the region, prompting many countries to mandate catch-and-release practices for recreational anglers. Previous estimates of billfish post-release behaviours and recovery periods after these physiologically stressful capture events, however, vary widely depending on the type of tag used. Using high-resolution, multi-sensor biologging tags, we provide a fine-scale, detailed view of the behaviour and recovery periods of blue marlin (Makaira nigricans; n = 9) and sailfish (Istiophorus platypterus, Istiophoridae; n = 9) caught in a typical recreational fishery in the ETP. Angling times ranged from 4 to 90 min, and fish were monitored for periods of 6–70 h after release. Blue marlin showed a characteristic long, deep dive immediately after release, with significantly greater duration associated with longer fight times, a behaviour not typical for sailfish. Diving depths were, however, much shallower than those previously reported for both species due to the shallow thermocline and oxycline present in the ETP. Data from 40 derived metrics from acceleration (i.e. tailbeat period, amplitude, pitch, etc.) and physical parameters (i.e. depth, speed, temperature, oxygen saturation, etc.) used to quantify a recovery period suggest blue marlin and sailfish recover 9.0 ± 3.2 and 4.9 ± 2.8 h after release, respectively. Our high-resolution assessment of post-release behaviour suggests that these billfish are capable of rapid physiological recovery after capture in recreational fisheries, and that catch-and-release practices like those used here can be an effective approach to conserve and sustain billfish populations in the ETP. Predicted climate change caused shallowing of the oxygen minimum zone, however, would increase the vertical habitat compression present in this region, potentially prolonging or inhibiting recovery.
Cavin4 interacts with Bin1 to promote T-tubule formation and stability in developing skeletal muscle
The cavin proteins are essential for caveola biogenesis and function. Here, we identify a role for the muscle-specific component, Cavin4, in skeletal muscle T-tubule development by analyzing two vertebrate systems, mouse and zebrafish. In both models, Cavin4 localized to T-tubules, and loss of Cavin4 resulted in aberrant T-tubule maturation. In zebrafish, which possess duplicated cavin4 paralogs, Cavin4b was shown to directly interact with the T-tubule–associated BAR domain protein Bin1. Loss of both Cavin4a and Cavin4b caused aberrant accumulation of interconnected caveolae within the T-tubules, a fragmented T-tubule network enriched in Caveolin-3, and an impaired Ca2+ response upon mechanical stimulation. We propose a role for Cavin4 in remodeling the T-tubule membrane early in development by recycling caveolar components from the T-tubule to the sarcolemma. This generates a stable T-tubule domain lacking caveolae that is essential for T-tubule function.
Diluted bitumen affects multiple physiological systems in sockeye salmon (oncorhynchus nerka) embryo to juvenile life stages
In rainbow trout, dietary carbohydrates are poorly metabolized compared with other macronutrients. One prevalent hypothesis suggests that high dietary amino acid levels could contribute to the poor utilization of carbohydrates in trout. In mammals, alanine is considered an important gluconeogenic precursor, but has recently been found to stimulate AMP-activated protein kinase (AMPK) to reduce glucose levels. In trout, the effect of alanine on glucose flux is unknown. The goal of this study was to determine the effects of 4 h exogenous alanine infusion on glucose metabolism in rainbow trout. Glucose flux, and the rate of glucose appearance (Ra) and disposal (Rd) were measured in vivo. Key glycolytic and gluconeogenic enzyme expression and activity, and cell signaling molecules relevant to glucose metabolism were assessed in the liver and muscle. The results show that alanine inhibits glucose Ra (from 13.2±2.5 to 7.3±1.6 μmol kg−1 min−1) and Rd (from 13.2±2.5 to 7.4±1.5 μmol kg−1 min−1) and the slight mismatch between Ra and Rd caused a reduction in glycemia, similar to the effects of insulin in trout. The reduction in glucose Rd can be partially explained by a reduction in glut4b expression in red muscle. In contrast to mammals, trout alanine-dependent glucose-lowering effects did not involve hepatic AMPK activation, suggesting a different mechanistic basis. Interestingly, protein kinase B (AKT) activation increased only in muscle, similar to effects observed in insulin-infused trout. We speculate that alanine-dependent effects were probably mediated through stimulation of insulin secretion, which could indirectly promote alanine oxidation to provide the needed energy.
Knifefish turning control and hydrodynamics during forward swimming
Rapid turning and swimming contribute to ecologically important behaviors in fishes such as predator avoidance, prey capture, mating and the navigation of complex environments. For riverine species, such as knifefishes, turning behaviors may also be important for navigating locomotive perturbations caused by turbulent flows. Most research on fish maneuvering focuses on fish with traditional fin and body morphologies, which primarily use body bending and the pectoral fins during turning. However, it is uncertain how fishes with uncommon morphologies are able to achieve sudden and controllable turns. Here, we studied the turning performance and the turning hydrodynamics of the black ghost knifefish (Apteronotus albifrons, N=6) which has an atypical elongated ribbon fin. Fish were filmed while swimming forward at ∼2 body lengths s−1 and feeding from a fixed feeder (control) and an oscillating feeder (75 Hz) at two different amplitudes. 3D kinematic analysis of the body revealed the highest pitch angles and lowest body bending coefficients during steady swimming. Low pitch angle, high maximum yaw angles and large body bending coefficients were characteristic of small and large turns. Asynchrony in pectoral fin use was low during turning; however, ribbon fin wavelength, frequency and wave speed were greatest during large turns. Digital particle image velocimetry (DPIV) showed larger counter-rotating vortex pairs produced during turning by the ribbon fin in comparison to vortices rotating in the same direction during steady swimming. Our results highlight the ribbon fin's role in controlled rapid turning through modulation of wavelength, frequency and wave speed.
Adaptive effects of parental and developmental environments on offspring survival, growth and phenotype
Phenotypic adjustments to environmental variation are particularly relevant to cope with putative environmental mismatches often imposed by natal dispersal. We used an intergenerational cross‐transplant field‐based experiment to evaluate the morphological and physiological effects of parental and postsettlement water flow environments on the orange‐fin anemonefish Amphiprion chrysopterus through ontogeny (at pre‐ and postsettlement stages). Offspring born from parents under high water flow had an 18% higher caudal fin aspect ratio (a compound measure of shape) at the presettlement stage, 10% slower growth after settlement, and 55% lower survival after settlement compared to offspring from low water flow parents. At the presettlement stage, caudal fin length was determined by parental caudal fin length. At the postsettlement stage, fish survived equally well with similar phenotypes in both high and low developmental flow environments. However, results suggest potential developmental phenotypic plasticity in caudal fin length, which increases more under low water flow during development. After settlement, growth was the only morphological or physiological trait that was associated with parental water flow, which was lower from parents under high flow, as was survival. These results give important insights into the parental contribution, both genetic and nongenetic, in determining early offspring phenotype and subsequent growth and survival. Our results also suggest that offspring may possess flexibility to cope with a wide range of local environments including those different from their parents. Overall, the findings of this study show the fitness consequences of living in different environments and the likely trade‐offs between parental and offspring fitness in a wild population.
Dual function and associated costs of a highly exaggerated trait in a cichlid fish
Exaggerated secondary sexual characteristics are apparently costly and seem to defy natural selection. This conundrum promoted the theory of sexual selection. Accordingly, exaggerated secondary sexual characteristics might be ornaments on which female choice is based and/or armaments used during male–male competition. Males of many cichlid fish species, including the adaptive radiation of Nicaraguan Midas cichlids, develop a highly exaggerated nuchal hump, which is thought to be a sexually selected trait. To test this hypothesis, we conducted a series of behavioral assays in F2 hybrids obtained from crossing a species with a relatively small hump and one with an exaggerated hump. Mate‐choice experiments showed a clear female preference for males with large humps. In an open‐choice experiment with limited territories, couples including large humped males were more successful in acquiring these territories. Therefore, nuchal humps appear to serve dual functions as an ornament for attracting mates and as an armament for direct contest with rivals. Although being beneficial in terms of sexual selection, this trait also imposes fitness costs on males possessing disproportionally large nuchal humps since they exhibit decreased endurance and increased energetic costs when swimming. We conclude that these costs illustrate trade‐offs associated with large hump size between sexual and natural selection, which causes the latter to limit further exaggeration of this spectacular male trait.
Metabolic and Transcriptional Adaptations Improve Physical Performance of Zebrafish
Obesity is a worldwide public health problem with increasing prevalence and affects 80% of diabetes mellitus type 2 cases. Zebrafish (Danio rerio) is an established model organism for studying obesity and diabetes including diabetic microvascular complications. We aimed to determine whether physical activity is an appropriate tool to examine training effects in zebrafish and to analyse metabolic and transcriptional processes in trained zebrafish. A 2- and 8-week experimental training phase protocol with adult zebrafish in a swim tunnel system was established. We examined zebrafish basic characteristics before and after training such as body weight, body length and maximum speed and considered overfeeding as an additional parameter in the 8-weeks training protocol. Ultimately, the effects of training and overfeeding on blood glucose, muscle core metabolism and liver gene expression using RNA-Seq were investigated. Zebrafish maximum speed was correlated with body length and was significantly increased after 2 weeks of training. Maximum swim speed further increased after 8 weeks of training in both the normal-fed and the overfed groups, but training was found not to be sufficient in preventing weight gain in overfed fish. Metabolome and transcriptome profiling in trained fish exhibited increased blood glucose levels in the short-term and upregulated energy supply pathways as well as response to oxidative stress in the long-term. In conclusion, swim training is a valuable tool to study the effects of physical activity in zebrafish, which is accompanied by metabolic and transcriptional adaptations.
N-Acetylcysteine and cysteamine bitartrate prevent azide-induced neuromuscular decompensation by restoring glutathione balance in two novel surf1−/− zebrafish deletion models of Leigh syndrome
SURF1 deficiency (OMIM # 220110) causes Leigh syndrome (LS, OMIM # 256000), a mitochondrial disorder typified by stress-induced metabolic strokes, neurodevelopmental regression and progressive multisystem dysfunction. Here, we describe two novel surf1−/− zebrafish knockout models generated by CRISPR/Cas9 technology. While gross larval morphology, fertility, and survival into adulthood appeared unaffected, surf1−/− mutants manifested adult-onset ocular anomalies and decreased swimming activity, as well as classical biochemical hallmarks of human SURF1 disease, including reduced complex IV expression and enzymatic activity and increased tissue lactate. surf1−/− larvae also demonstrated oxidative stress and stressor hypersensitivity to the complex IV inhibitor, azide, which exacerbated their complex IV deficiency, reduced supercomplex formation, and induced acute neurodegeneration typical of LS including brain death, impaired neuromuscular responses, reduced swimming activity, and absent heartrate. Remarkably, prophylactic treatment of surf1−/− larvae with either cysteamine bitartrate or N-acetylcysteine, but not other antioxidants, significantly improved animal resiliency to stressor-induced brain death, swimming and neuromuscular dysfunction, and loss of heartbeat. Mechanistic analyses demonstrated cysteamine bitartrate pretreatment did not improve complex IV deficiency, ATP deficiency, or increased tissue lactate but did reduce oxidative stress and restore glutathione balance in surf1−/− animals. Overall, two novel surf1−/− zebrafish models recapitulate the gross neurodegenerative and biochemical hallmarks of LS, including azide stressor hypersensitivity that was associated with glutathione deficiency and ameliorated by cysteamine bitartrate or N-acetylcysteine therapy.
Effects of continuous exposure to total dissolved gas supersaturation on swimming ability and recovery in grass carp (Ctenopharyngodon idella)
Total dissolved gas (TDG) supersaturation caused by flood discharge water is becoming a serious environmental problem that threatens the survival of fish. The swimming ability of fish may be influenced by TDG supersaturation. To investigate the effects of continuous exposure to TDG supersaturation on fish swimming ability, we measured the critical swimming speed ( U crit ) and burst swimming speed ( U burst ) of grass carp continuously exposed to TDG supersaturation. The U crit values of grass carp were 6.34–3.68 body length per second (BL/s) at 100%, 105%, 110%, 115%, 120%, 125%, 130% and 135% TDG, while the U burst values were 10.2–8.96 BL/s at these TDG levels. The swimming ability ( U crit and U burst ) of grass carp decreased with increasing TDG levels and was significantly decreased at higher TDG levels (>120%). A swimming ability recovery test was used to investigate the effects of recovery on the swimming ability of grass carp continuously exposed to TDG supersaturation. When grass carp experienced exposures of 115%, 120%, 125%, 130% and 135% TDG, the recovery ratios of U crit were 76%–82% and 77%–86% after recovering for 1 and 2 h, respectively, in freshwater (100% TDG). The recovery ratios of U burst of grass carp were 84%–98% and 95%–97% under the same recovery conditions and TDG levels. The results showed that the recovery ratios of both U crit and U burst increased with the extension of the recovery time. The swimming ability of grass carp provided with a 2‐h recovery time recovered almost completely.
Interpopulation variation in thermal physiology among seasonal runs of Chinook salmon
Intrinsic and extrinsic inhibition of neuronal regeneration obstruct spinal cord (SC) repair in mammals. In contrast, adult zebrafish achieve functional recovery after complete SC transection. While studies of innate SC regeneration have focused on axon regrowth as a primary repair mechanism, how local adult neurogenesis affects functional recovery is unknown. Here, we uncover dynamic expression of zebrafish myostatin b (mstnb) in a niche of dorsal SC progenitors after injury. mstnb mutants show impaired functional recovery, normal glial and axonal bridging across the lesion, and an increase in the profiles of newborn neurons. Molecularly, neuron differentiation genes are upregulated, while the neural stem cell maintenance gene fgf1b is downregulated in mstnb mutants. Finally, we show that human fibroblast growth factor 1 (FGF1) treatment rescues the molecular and cellular phenotypes of mstnb mutants. These studies uncover unanticipated neurogenic functions for mstnb and establish the importance of local adult neurogenesis for innate SC repair.
Significance of sea entry pathway of chum salmon Oncorhynchus keta fry, inferred from the differential expressions of Na+, K+-ATPase α-subunit genes in the gills
Better together: cross-tolerance induced by warm acclimation and nitrate exposure improved the aerobic capacity and stress tolerance of common carp Cyprinus carpio
Climate warming is a threat of imminent concern that may exacerbate the impact of nitrate pollution on fish fitness. These stressors can individually affect the aerobic capacity and stress tolerance of fish. In combination, they may interact in unexpected ways where exposure to one stressor may heighten or reduce the resilience to another stressor and their interactive effects may not be uniform across species. Here, we examined how nitrate pollution under a warming scenario affects the aerobic scope (AS), and the hypoxia and heat stress susceptibility of a generally tolerant fish species, common carp Cyprinus carpio. We used a 3 × 2 factorial design, where fish were exposed to one of three ecologically relevant levels of nitrate (0, 50, or 200 mg NO 3 - L -1 ) and one of two temperatures (18 °C or 26 °C) for 5 weeks. Warm acclimation increased the AS by 11% due to the maintained standard metabolic rate and increased maximum metabolic rate at higher temperature, and the AS improvement seemed greater at higher nitrate concentration. Warm-acclimated fish exposed to 200 mg NO 3 - L -1 were less susceptible to acute hypoxia, and fish acclimated at higher temperature exhibited improved heat tolerance (critical thermal maxima, CTMax) by 5 °C. This cross-tolerance can be attributed to the hematological results including maintained haemoglobin and increased haematocrit levels that may have compensated for the initial surge in methaemoglobin at higher nitrate exposure.
Muscle fiber plasticity, stress physiology, and muscle transcriptome determine the inter-individual difference of swimming performance in the large yellow croaker (Larimichthys crocea)
How does induced polyploidy affect the swimming and physiological performance of juvenile sterlet (Acipenser ruthenus) and Siberian sturgeon (Acipenser baerii) and their reciprocal hybrids?
Polycyclic aromatic hydrocarbons (PAH) are products of incomplete combustion which are ubiquitous pollutants and constituents of harmful mixtures such as tobacco smoke, petroleum and creosote. Animal studies have shown that these compounds exert developmental toxicity in multiple organ systems, including the nervous system. The relative persistence of or recovery from these effects across the lifespan remain poorly characterized. These studies tested for persistence of neurobehavioral effects in AB* zebrafish exposed 5–120 hours post-fertilization to a typical PAH, benzo[a]pyrene (BAP). Study 1 evaluated the neurobehavioral effects of a wide concentration range of BAP (0.02–10 μM) exposures from 5–120 hpf during larval (6 days) and adult (6 months) stages of development, while study 2 evaluated neurobehavioral effects of BAP (0.3–3 μM) from 5–120 hpf across four stages of development: larval (6 days), adolescence (2.5 months), adulthood (8 months) and late adulthood (14 months). Embryonic BAP exposure caused minimal effects on larval motility, but did cause neurobehavioral changes at later points in life. Embryonic BAP exposure led to nonmonotonic effects on adolescent activity (0.3μM hyperactive, Study 2), which attenuated with age, as well as startle responses (0.2 μM enhanced, Study 1) at 6 months of age. Similar startle changes were also detected in Study 2 (1.0μM), though it was observed that the phenotype shifted from reduced pretap activity to enhanced posttap activity from 8–14 months of age. Changes in the avoidance (0.02–10 μM, Study 1) and approach (reduced, 0.3μM, Study 2) of aversive/social cues were also detected, with the latter attenuating from 8–14 months of age. Fish from study 2 were maintained into aging (18 months) and evaluated for overall and tissue-specific oxygen consumption to determine whether metabolic processes in the brain and other target organs show altered function in late life based on embryonic PAH toxicity. BAP reduced whole animal oxygen consumption, and overall reductions in total basal, mitochondrial basal, and mitochondrial maximum respiration in target organs, including the brain, liver and heart. The present data show that embryonic BAP exposure can lead to neurobehavioral impairment across the life-span, but that these long-term risks differentially emerge or attenuate as development progresses. Keywords: zebrafish, polycyclic hydrocarbon, benzo-a-pyrene, aging, neurobehavioral toxicology
Juvenile semi-wild fish have a higher metabolic rate than farmed fish
Dietary exposure to environmentally relevant pesticide mixtures impairs swimming performance and lipid homeostatic gene expression in Juvenile Chinook salmon at elevated water temperatures
Latent impacts on juvenile rainbow trout (Oncorhynchus mykiss) cardio-respiratory function and swimming performance following embryonic exposures to hydraulic fracturing flowback and produced water
The current study involved exposing adult F0 Gulf killifish (Fundulus grandis) to Macondo-252 oil for 36 to 44 days and assessing the effects of this oiling on the swimming performance and morphology in two generations of progeny reared in clean water. Following exposure to oil, the F0 fish were used as broodstock to generate four lineages of F1 fish using a full-matrix mating design derived from the gametes of clean and oil-exposed parents. Later, the four lineages of F1 fish were used as broodstock to create an F2 generation of the same four lineages. We found few differences in embryonic outcome (% dead,% hatched, and% unhatched) in any of the four lineages of F1 and F2 fish. However, as adults, F1 and F2 fish derived from oil-exposed males from the F0 generation had significantly lower critical swimming speeds (U) than both the control and maternally oil-exposed lineages. Additionally, progeny of oil-exposed fish had altered body shape based on the statistical analysis of two-dimensional landmark-based geometric morphometrics. Fish from oil-exposed lineages showed increased body depth, altered spinal curvature, and changes in the upward angle of projection of the head. Both generations had a significant main effect of maternal and paternal oil exposure on shape; however, F0 paternal oil exposure explained more of the variance in shape across both generations relative to F0 maternal exposure. Our findings demonstrate that parental exposure to oil can impact the shape and aerobic swimming capacity of offspring for at least two generations after the original paternal oiling.
Diluted bitumen-induced alterations in aerobic capacity, swimming performance, and post-exercise recovery in juvenile sockeye salmon (Oncorhynchus nerka)
Many marine animals perform fascinating survival hydrodynamics and perceive their surroundings through optimally evolved sensory systems. For instance, phocid seal whiskers have undulations that allow them to resist noisy self‐induced vortex‐induced vibrations (VIV) while locking their vibration frequencies to wakes generated by swimming fishes. In this study, fully 3D‐printed microelectromechanical systems (MEMS) sensors with high gauge factor graphene nanoplatelets piezoresistors are developed to explain the exquisite sensitivity of whisker‐inspired structures to upstream wakes. The sensors are also used to measure natural frequencies of excised harbor ( Phoca vitulina ) and grey ( Halichoerus grypus ) seal whiskers and determine the effect of whisker orientation on the VIV, which can explain the possible natural orientation of whiskers during active hunting. Experimental investigations conducted in a recirculating water flume show that whisker‐inspired sensors successfully sense an upstream wake located up to 10× the whisker diameter by locking to the frequency of the wake generator, thus mimicking the sensing mechanism of the seal whisker. The combination of VIV reduction and frequency‐locking with the upstream wake generator demonstrates the whisker‐inspired sensor's high signal‐to‐noise ratio, indicating its efficiency in long‐distance wake sensing as well as its potential as an alternative to visual and acoustic sensors in underwater robots.
Sex-Specific and Long-Term Impacts of Early-Life Venlafaxine Exposure in Zebrafish
Venlafaxine, a selective serotonin and norepinephrine reuptake inhibitor, is a widely prescribed antidepressant that is detected in municipal wastewater effluents at µg/L concentrations. It has been shown to impact the early life stages of fish, including neurodevelopment and behaviour in larvae, but whether such early exposures have longer-term consequences are far from clear. Here, we sought to determine whether zygotic deposition of venlafaxine, mimicking a maternal transfer scenario, disturbs the metabolic rate and behavioural performance using zebrafish (Danio rerio). This was tested using freshly fertilized embryos (1–4 cell stage) microinjected with either 0, 1 or 10 ng of venlafaxine and raised to either juvenile (60 days post-fertilization) or adult (10–12 months post-fertilization). Zygotic venlafaxine exposure led to a reduction in the active metabolic rate and aerobic scope, but this was only observed in female fish. On the other hand, the total distance travelled in an open field assessment was greater at the highest concentration of venlafaxine only in the adult males. At the juvenile stage, behavioural assessments demonstrated that venlafaxine exposure may increase boldness—including hyperactivity, lower thigmotaxis, and a reduction in the distance to a novel object. Taken together, these results demonstrate that zygotic venlafaxine exposure may impact developmental programming in a sex-specific manner in fish.
Simulated trapping and trawling exert similar selection on fish morphology
Commercial fishery harvest can influence the evolution of wild fish populations. Our knowledge of selection on morphology is however limited, with most previous studies focusing on body size, age, and maturation. Within species, variation in morphology can influence locomotor ability, possibly making some individuals more vulnerable to capture by fishing gears. Additionally, selection on morphology has the potential to influence other foraging, behavioral, and life‐history related traits. Here we carried out simulated fishing using two types of gears: a trawl (an active gear) and a trap (a passive gear), to assess morphological trait‐based selection in relation to capture vulnerability. Using geometric morphometrics, we assessed differences in shape between high and low vulnerability fish, showing that high vulnerability individuals display shallower body shapes regardless of gear type. For trawling, low vulnerability fish displayed morphological characteristics that may be associated with higher burst‐swimming, including a larger caudal region and narrower head, similar to evolutionary responses seen in fish populations responding to natural predation. Taken together, these results suggest that divergent selection can lead to phenotypic differences in harvested fish populations.
Activation of Nkx2. 5 transcriptional program is required for adult myocardial repair
The cardiac developmental network has been associated with myocardial regenerative potential. However, the embryonic signals triggered following injury have yet to be fully elucidated. Nkx2.5 is a key causative transcription factor associated with human congenital heart disease and one of the earliest markers of cardiac progenitors, thus it serves as a promising candidate. Here, we show that cardiac-specific RNA-sequencing studies reveal a disrupted embryonic transcriptional profile in the adult Nkx2.5 loss-of-function myocardium. nkx2.5−/− fish exhibit an impaired ability to recover following ventricular apex amputation with diminished dedifferentiation and proliferation. Complex network analyses illuminate that Nkx2.5 is required to provoke proteolytic pathways necessary for sarcomere disassembly and to mount a proliferative response for cardiomyocyte renewal. Moreover, Nkx2.5 targets embedded in these distinct gene regulatory modules coordinate appropriate, multi-faceted injury responses. Altogether, our findings support a previously unrecognized, Nkx2.5-dependent regenerative circuit that invokes myocardial cell cycle re-entry, proteolysis, and mitochondrial metabolism to ensure effective regeneration in the teleost heart. Cardiac developmental genes have been associated with regenerative potential. Here the authors identify a Nkx2.5-dependent gene regulatory network operating through ect2, psmb3, and psmd7 to orchestrate cell cycle re-entry, proteolysis, and mitochondrial metabolism during myocardial repair.
Oxygen consumption in relation to current velocity and morphology in the highly invasive crayfish Procambarus clarkii
The red swamp crayfish (Procambarus clarkii) is the most widely spread freshwater crayfish worldwide. Competing physiological traits can influence invasion success in any given environment by limiting the available scope for aerobically demanding activities. While high flows have been associated with reduced crayfish movement upstream, the effects of flow alteration on their metabolic demands have been largely overlooked. In this study, we estimated routine metabolic rate (RMR) at rest and oxygen consumption rates of crayfish under different current velocities in a flume respirometer, while maximum metabolic rate (MMR) was determined using the exhaustive chase protocol. We also measured some morphometric variables in males and females of crayfish. Oxygen uptake substantially increased with crayfish size and current velocity due to increased energy expenditure to overcome drag and hold a stationary position. Sexual dimorphism in morphological traits did not lead to sexual differences in oxygen uptake. Moreover, we found that individuals operated close to their maximum aerobic capacity at elevated current velocities (≥ 25 cm s−1). This suggested that the high flow-driven energetic demand may compromise the energy available for reproduction, growth and dispersal, thereby affecting overall fitness. These metabolic constraints could partly explain the failed invasions of invasive crayfish in fast-flowing waters.
Can slowing the rate of water temperature decline be utilized to reduce the impacts of cold water pollution from dam releases on fish physiology and performance?
Cold water pollution (CWP) is caused by releases of unseasonably cold water from large, thermally stratified dams. Rapid and prolonged decreases in water temperature can have depressive effects on the metabolism, growth and swimming performance of fish. However, it is unknown if reducing the rate of temperature decrease could mitigate these negative effects by allowing thermal acclimation/acclimatization to occur. This study investigated the rate of temperature decrease as a potential CWP mitigation strategy in juvenile Murray cod Maccullochella peelii. M. peelii were exposed to a gradual, intermediate or rapid temperature decrease from 24 to 14°C. Energetic costs, locomotor performance, growth and survival were measured to determine if the initial thermal regime affected the thermal acclimation capacity of M. peelii. Cold exposure had significant acute and lasting depressive effects regardless of the rate of temperature decrease, although M. peelii showed varying degrees of thermal compensation in swimming performance and metabolism after 8 weeks of exposure to low temperatures. The short‐term effects of CWP‐like reductions in temperature are significant, but over time M. peelii can offset some of the depressive effects of CWP through thermal plasticity. This study highlights the importance of understanding physiological responses of fish to inform management and conservation. We conclude that rate of water temperature decline cannot be used to mitigate the sublethal effects of CWP on juvenile M. peelii but may still be useful for managing the negative effects in other native Australian fish species.
Condition factor dependency of burst swimming ability between wild and hatchery-reared chum salmon fry (Oncorhynchus keta)
Burst swimming velocity (Uburst) was compared between wild and hatchery-reared chum salmon fry. In the hatchery-reared fry, Uburst was significantly correlated with the condition factor, but not with the body mass and fork length. In the wild-reared fry, on the other hand, Uburst ranged widely and did not correlate with condition factor. These suggest that well-balanced growth under satisfactory nutrient condition at the early developmental stage improves Uburst, and in the wild-reared fry, their cautiousness and various experiences may override the condition factor dependency of Uburst.
Does the match between individual and group behavior matter in shoaling sticklebacks?
In animals living in groups, the social environment is fundamental to shaping the behaviors and life histories of an individual. A mismatch between individual and group behavior patterns may have disadvantages if the individual is incapable of flexibly changing its state in response to the social environment that influences its energy gain and expenditure. We used different social groups of juvenile three‐spined sticklebacks ( Gasterosteus aculeatus ) with experimentally manipulated compositions of individual sociability to study the feedback between individual and group behaviors and to test how the social environment shapes behavior, metabolic rate, and growth. Experimentally created unsociable groups, containing a high proportion of less sociable fish, showed bolder collective behaviors during feeding than did corresponding sociable groups. Fish within groups where the majority of members had a level of sociability similar to their own gained more mass than did those within mismatched groups. Less sociable individuals within sociable groups tended to have a relatively low mass but a high standard metabolic rate. A mismatch between the sociability of an individual and that of the majority of the group in which it is living confers a growth disadvantage probably due to the expression of nonadaptive behaviors that increase energetic costs.
Differences in external morphology, body composition and swimming performance between hatchery-and wild-origin marbled rockfish (Sebastiscus marmoratus)
Stock enhancement based on hatchery-reared fish has become one of the most common forms of management practices in marine fisheries resource restoration. However, unnatural rearing environments may cause hatchery-reared fish to diverge phenotypically from wild conspecifics, with negative consequences for post-release performance in the natural environments. To better evaluate the suitability of releasing hatchery-reared fish, it is necessary to understand the phenotypic effects of captive rearing, through comparisons with wild conspecifics. In this study, we compared body morphology, swimming performance, and biochemical body composition between hatchery-reared and wild marbled rockfish (Sebastiscus marmoratus) from the same general gene pool. The results show that the overall body profile differed significantly between the groups, with hatchery-reared individuals having a deeper body (in particular in the head and trunk regions), narrower caudal peduncles, and higher condition factor, as compared to wild conspecifics. Hatchery-reared rockfish also had relatively shorter fins, for a given size. In terms of swimming performance, the hatchery-reared rockfish performed worse than the wild, with slower burst swimming speeds and poorer endurance. Wild rockfish had higher body protein content but lower lipid levels compared to the hatchery-reared individuals. These results suggest that hatchery rearing conditions have a great impact on the phenotypic development, with possibly high effects on their post-release performance of the hatchery-reared marbled rockfish. Modifications for the hatchery environment and operation should be investigated with an aim to minimize the divergence in phenotypic development for production of more wild-like fish for stocking.
Locomotion dependent neuron-glia interactions control neurogenesis and regeneration in the adult zebrafish spinal cord
Physical exercise stimulates adult neurogenesis, yet the underlying mechanisms remain poorly understood. A fundamental component of the innate neuroregenerative capacity of zebrafish is the proliferative and neurogenic ability of the neural stem/progenitor cells. Here, we show that in the intact spinal cord, this plasticity response can be activated by physical exercise by demonstrating that the cholinergic neurotransmission from spinal locomotor neurons activates spinal neural stem/progenitor cells, leading to neurogenesis in the adult zebrafish. We also show that GABA acts in a non-synaptic fashion to maintain neural stem/progenitor cell quiescence in the spinal cord and that training-induced activation of neurogenesis requires a reduction of GABAA receptors. Furthermore, both pharmacological stimulation of cholinergic receptors, as well as interference with GABAergic signaling, promote functional recovery after spinal cord injury. Our findings provide a model for locomotor networks’ activity-dependent neurogenesis during homeostasis and regeneration in the adult zebrafish spinal cord. The mechanisms stimulating adult neurogenesis are unclear. Here, the authors show the contribution of cholinergic and GABAergic signalling within the locomotor network to spinal cord neurogenesis during homeostasis and regeneration, showing neurogenesis depends on circuit activity in the adult zebrafish.
Density influences the heritability and genetic correlations of fish behaviour under trawling‐associated selection
Fishing‐associated selection is one of the most important human‐induced evolutionary pressures for natural populations. However, it is unclear whether fishing leads to heritable phenotypic changes in the targeted populations, as the heritability and genetic correlations of traits potentially under selection have received little attention. In addition, phenotypic changes could arise from fishing‐associated environmental effects, such as reductions in population density. Using fish reared at baseline and reduced group density and repeatedly harvested by simulated trawling, we show that trawling can induce direct selection on fish social behaviour. As sociability has significant heritability and is also genetically correlated with activity and exploration, trawling has the potential to induce both direct selection and indirect selection on a variety of fish behaviours, potentially leading to evolution over time. However, while trawling selection was consistent between density conditions, the heritability and genetic correlations of behaviours changed according to the population density. Fishing‐associated environmental effects can thus modify the evolutionary potential of fish behaviour, revealing the need to use a more integrative approach to address the evolutionary consequences of fishing.
A Swimming-based Assay to Determine the Exercise Capacity of Adult Zebrafish Cardiomyopathy Models
Exercise capacity, measured by treadmill in humans and other mammals, is an important diagnostic and prognostic index for patients with cardiomyopathy and heart failure. The adult zebrafish is increasingly used as a vertebrate model to study human cardiomyopathy due to its conserved cardiovascular physiology, convenience for genetic manipulation, and amenability to high-throughput genetic and compound screening. Owing to the small size of its body and heart, new phenotyping assays are needed to unveil phenotypic traits of cardiomyopathy in adult zebrafish. Here, we describe a swimming-based functional assay that measures exercise capacity in an adult zebrafish doxorubicin-induced cardiomyopathy model. This protocol can be applied to any adult zebrafish model of acquired or inherited cardiomyopathy and potentially to other cardiovascular diseases. Graphic abstract: Clinical relevance of the swimming-based phenotyping assay in adult zebrafish cardiomyopathy models.
Identification of Potentially Related Genes and Mechanisms Involved in Skeletal Muscle Atrophy Induced by Excessive Exercise in Zebrafish
Long-term imbalance between fatigue and recovery may eventually lead to muscle weakness or even atrophy. We previously reported that excessive exercise induces pathological cardiac hypertrophy. However, the effect of excessive exercise on the skeletal muscles remains unclear. In the present study, we successfully established an excessive-exercise-induced skeletal muscle atrophy zebrafish model, with decreased muscle fiber size, critical swimming speed, and maximal oxygen consumption. High-throughput RNA-seq analysis identified differentially expressed genes in the model system compared with control zebrafish. Gene ontology and KEGG enrichment analysis revealed that the upregulated genes were enriched in autophagy, homeostasis, circadian rhythm, response to oxidative stress, apoptosis, the p53 signaling pathway, and the FoxO signaling pathway. Protein–protein interaction network analysis identified several hub genes, including keap1b, per3, ulk1b, socs2, esrp1, bcl2l1, hsp70, igf2r, mdm2, rab18a, col1a1a, fn1a, ppih, tpx2, uba5, nhlrc2, mcm4, tac1, b3gat3, and ddost, that correlate with the pathogenesis of skeletal muscle atrophy induced by excessive exercise. The underlying regulatory pathways and muscle-pressure-response-related genes identified in the present study will provide valuable insights for prescribing safe and accurate exercise programs for athletes and the supervision and clinical treatment of muscle atrophy induced by excessive exercise.
Disruption of MAP7D1 Gene Function Increases the Risk of Doxorubicin-Induced Cardiomyopathy and Heart Failure
Doxorubicin is a cornerstone chemotherapeutic drug widely used to treat various cancers; its dose‐dependent cardiomyopathy, however, is one of the leading causes of treatment‐associated mortality in cancer survivors. Patients’ threshold doses leading to doxorubicin‐induced cardiomyopathy (DIC) and heart failure are highly variable, mostly due to genetic variations in individuals’ genomes. However, genetic susceptibility to DIC remains largely unidentified. Here, we combined a genetic approach in the zebrafish ( Danio rerio ) animal model with a genome‐wide association study (GWAS) in humans to identify genetic susceptibility to DIC and heart failure. We firstly reported the cardiac and skeletal muscle‐specific expression and sarcomeric localization of the microtubule‐associated protein 7 domain‐containing protein 1b (Map7d1b) in zebrafish, followed by expression validation in mice. We then revealed that disruption of the map7d1b gene function exaggerated DIC effects in adult zebrafish. Mechanistically, the exacerbated DIC are likely conveyed by impaired autophagic degradation and elevated protein aggregation. Lastly, we identified 2 MAP7D1 gene variants associated with cardiac functional decline and heart failure in cancer patients who received doxorubicin therapy. Together, this study identifies MAP7D1 as a clinically relevant susceptibility gene to DIC and heart failure, providing useful information to stratify cancer patients with a high risk of incurring severe cardiomyopathy and heart failure after receiving chemotherapy.
Environmental modulators of diluted bitumen effects in juvenile pink salmon (Oncorhynchus gorbuscha)
Some hypoxia-tolerant species, such as goldfish, experience intermittent and severe hypoxia in their natural habitat, causing them to develop multiple physiological adaptations. However, in fish, the metabolic impact of regular hypoxic exposure on swimming performance in normoxia is less well understood. Therefore, we experimentally tested whether chronic exposure to constant (30 days at 10% air saturation) or intermittent hypoxia (3 h in normoxia and 21 h in hypoxia, 5 days a week) would result in similar metabolic and swimming performance benefits after reoxygenation. Moreover, half of the normoxic and intermittent hypoxic fish were put on a 20-day normoxic training regime. After these treatments, metabolic rate (standard and maximum metabolic rates: SMR and MMR) and swimming performance [critical swimming speed (Ucrit) and cost of transport (COT)] were assessed. In addition, enzyme activities [citrate synthase (CS), cytochrome c oxidase (COX) and lactate dehydrogenase (LDH)] and mitochondrial respiration were examined in red muscle fibres. We found that acclimation to constant hypoxia resulted in (1) metabolic suppression (−45% SMR and −27% MMR), (2) increased anaerobic capacity (+117% LDH), (3) improved swimming performance (+80% Ucrit, −71% COT) and (4) no changes at the mitochondrial level. Conversely, the enhancement of swimming performance was reduced following acclimation to intermittent hypoxia (+45% Ucrit, −41% COT), with a 55% decrease in aerobic scope, despite a significant increase in oxidative metabolism (+201% COX, +49% CS). This study demonstrates that constant hypoxia leads to the greatest benefit in swimming performance and that mitochondrial metabolic adjustments only provide minor help in coping with hypoxia.
Convergence of undulatory swimming kinematics across a diversity of fishes
Significance Swimming ability has contributed to the evolutionary success of fishes, and its mechanics have been studied extensively. Most fishes swim primarily through undulation of their body and caudal fin (BCF) and have been historically divided into four major kinematic modes based on their morphology. Here, we compare kinematics of BCF locomotion in 44 species. Contrary to expectations and despite considerable morphological diversity, fishes share major kinematic features during steady swimming and are placed on a continuum rather than in discrete categories. This suggests a unifying BCF mechanism to generate efficient aquatic propulsion. Our work reevaluates a well-established hypothesis in biomechanics, highlighting the importance of avoiding a priori partitioning of fishes into modes, to further our understanding of aquatic locomotion. Fishes exhibit an astounding diversity of locomotor behaviors from classic swimming with their body and fins to jumping, flying, walking, and burrowing. Fishes that use their body and caudal fin (BCF) during undulatory swimming have been traditionally divided into modes based on the length of the propulsive body wave and the ratio of head:tail oscillation amplitude: anguilliform, subcarangiform, carangiform, and thunniform. This classification was first proposed based on key morphological traits, such as body stiffness and elongation, to group fishes based on their expected swimming mechanics. Here, we present a comparative study of 44 diverse species quantifying the kinematics and morphology of BCF-swimming fishes. Our results reveal that most species we studied share similar oscillation amplitude during steady locomotion that can be modeled using a second-degree order polynomial. The length of the propulsive body wave was shorter for species classified as anguilliform and longer for those classified as thunniform, although substantial variability existed both within and among species. Moreover, there was no decrease in head:tail amplitude from the anguilliform to thunniform mode of locomotion as we expected from the traditional classification. While the expected swimming modes correlated with morphological traits, they did not accurately represent the kinematics of BCF locomotion. These results indicate that even fish species differing as substantially in morphology as tuna and eel exhibit statistically similar two-dimensional midline kinematics and point toward unifying locomotor hydrodynamic mechanisms that can serve as the basis for understanding aquatic locomotion and controlling biomimetic aquatic robots.
Swimming capability of target fish from eight hydropower stations in China relative to fishway design
The four major Chinese carp (MC), Schizothorax fish species (SF), and Cobitidae fish species (CF) are the most important target fish species in China. The swimming behaviour study of three target fish groups is the key to Chinese fishway designs. The 20 min critical swimming speed (U crit-20 min ) and endurance of the target fish species in relation to body length, swimming speed, and water temperature were estimated using multiple linear regression. The results indicated that both fish body length and water temperature had a significant effect on swimming capability. Performance comparisons indicated that SF were remarkably strong swimmer. CF possess slightly greater swimming capability than MC. The entrance velocity of the upstream fishway should be greater than U crit-20 min, but less than maximum swimming speed to make the flow out of the fishway noticeable. The maximum swimming distance could be estimated using endurance model at flow velocity of 1.2 m·s –1. For the downstream-migrating juvenile fish, it was suggested that the flow velocity of turbine intake should be less than maximum sustained speed avoiding entering turbine.
Impact of TDG supersaturation on native fish species under different hydropower flood discharge programs
Fishes exposed to crude oil have shown reduced sociability and poor habitat selection, which corresponded with increased predation risk. However, the contribution of oil-induced cardiorespiratory impairments to these findings is uncertain. This study explores the effect of oil exposure on predation risk in a model fish species, Sciaenops ocellatus, across a suite of physiological and behavioral end points to elucidate the mechanisms through which any observed effects are manifested. Using mesocosms to assess group predator avoidance, oil exposure to 36.3 μg l -1 ΣPAH reduced the time to 50% mortality from a mean time of 80.0 (74.1-86.0 95% confidence interval [CI]) min to 39.2 (35.6-42.8 95% CI) min. The influence of oil impaired cardiorespiratory and behavioral pathways on predation risk was assessed based on respiratory performance, swim performance, sociability, and routine activity. Swim trials demonstrated that cardiorespiratory and swim performance were unaffected by exposures to 26.6 or 100.8 μg l -1 ΣPAH. Interestingly, behavioral tests revealed that exposure to 26.6 μg l -1 ΣPAH increased distance moved, speed, acceleration, and burst activity. These data indicate that behavioral impairment is more sensitive than cardiorespiratory injury and may be a more important driver of downstream ecological risk following oil exposure in marine species.
Calibrating Accelerometer Tags with Oxygen Consumption Rate of Rainbow Trout (Oncorhynchus mykiss) and Their Use in Aquaculture Facility: A Case Study
Metabolic rates are linked to the energetic costs of different activities of an animal’s life. However, measuring the metabolic rate in free-swimming fish remains challenging due to the lack of possibilities to perform these direct measurements in the field. Thus, the calibration of acoustic transmitters with the oxygen consumption rate (MO2) could be promising to counter these limitations. In this study, rainbow trout (Oncorhynchus mykiss Walbaum, 1792; n = 40) were challenged in a critical swimming test (Ucrit) to (1) obtain insights about the aerobic and anaerobic metabolism throughout electromyograms; and (2) calibrate acoustic transmitters’ signal with the MO2 to be later used as a proxy of energetic costs. After this calibration, the fish (n = 12) were implanted with the transmitter and were followed during ~50 days in an aquaculture facility, as a case study, to evaluate the potential of such calibration. Accelerometer data gathered from tags over a long time period were converted to estimate the MO2. The MO2 values indicated that all fish were reared under conditions that did not impact their health and welfare. In addition, a diurnal pattern with higher MO2 was observed for the majority of implanted trout. In conclusion, this study provides (1) biological information about the muscular activation pattern of both red and white muscle; and (2) useful tools to estimate the energetic costs in free-ranging rainbow trout. The use of acoustic transmitters calibrated with MO2, as a proxy of energy expenditure, could be promising for welfare assessment in the aquaculture industry.
Swimming activity of gilthead seabream (Sparus aurata) in swim-tunnels: acoustic accelerometry, oxygen consumption and body motion
Acoustic transmitters equipped with accelerometer sensors are considered a useful tool to study swimming activity, including energetics and movement patterns, of fish species in aquaculture and in nature. However, given the novelty of this technique, further laboratory-derived calibrations are needed to assess the characteristics and settings of accelerometer acoustic transmitters for different species and specific environmental conditions. In this study, we compared accelerometer acoustic transmitter outputs with swimming performance and body motion of gilthead seabream ( Sparus aurata L.) in swim-tunnels at different flow speeds, which allowed us to characterize the swimming activity of this fish species of high aquaculture interest. Tag implantation in the abdominal cavity had no significant effects on swimming performance and body motion parameters. Accelerations, cost of transport and variations on head orientation (angle with respect to flow direction) were negatively related to flow speed in the tunnel, whereas oxygen consumption and frequencies of tail-beat and head movements increased with flow speed. These results show that accelerometer acoustic transmitters mainly recorded deviations from sustained swimming in the tunnel, due to spontaneous and explorative swimming at the lowest speeds or intermittent burst and coast actions to cope with water flow. In conclusion, accelerometer acoustic transmitters applied in this study provided a proxy for unsustained swimming activity, but did not contemplate the high-energy cost spent by gilthead seabream on sustained swimming, and therefore, it did not provide a proxy for general activity. Despite this limitation, accelerometer acoustic transmitters provide valuable insight in swim patterns and therefore may be a good strategy for advancing our understanding of fish swimming behavior in aquaculture, allowing for rapid detection of changes in species-specific behavioral patterns considered indicators of fish welfare status, and assisting in the refinement of best management practices.
Does dietary Tenebrio molitor affect swimming capacity, energy use, and physiological responses of European perch Perca fluviatilis?
Habitat fragmentation is a principal threat to biodiversity and artificial river barriers are a leading cause of the global decline in freshwater biota. Although the impact of barriers on diadromous fish is well established, impacts on river‐resident fish communities remain unclear, especially for low‐head barriers. We examined the movement of five contrasting freshwater fish (topmouth gudgeon, European minnow, stone loach, bullhead and brown trout) in an experimental cascade mesocosm with seven pools separated by small vertical barriers. Passage rates differed significantly among species and increased with body size and sustained swimming speed ( U sus ), ranging from an average of 0.2 passes/hr in topmouth gudgeon to 3.4 passes/hr in brown trout. A random‐walk simulation indicated that barriers can result in net downstream movement and shifts in community composition. Passage rates in brown trout were leptokurtic, that is, most individuals were relatively sedentary while a small proportion showed frequent movements. Upstream passage rates of brown trout increased with body length and boldness while fish with lower aerobic scope tended to move downstream. Passage rates showed significant individual repeatability in brown trout, independent of body size, indicating the potential for in‐stream barriers to exert selective effects on fish populations. Our results show that barrier effects can be more complex than simply blocking fish passage, and that river‐resident fish can be impacted even by very small barriers. We show that fish passage depends on a wide range of morphological, physiological and behavioural drivers, and that barriers can exert selective effects on these traits and cause shifts in community composition. Policy implications. Barrier mitigation measures need to embrace interspecific and intraspecific variation in fish passage to avoid inadvertent artificial selection on fish communities. Given the high abundance of low‐head structures in river systems worldwide, a paradigm shift is needed to recognise the subtle impacts of small barriers on freshwater biodiversity. Removal of small barriers or nature‐like fishways should allow better passage of the wider fish community compared to widely used salmonid‐centric fish passage options.
Exercise duration and cohort affect variability and longevity of the response to exercise training in California Yellowtail (Seriola dorsalis)
Eel-like fish can exhibit efficient swimming with comparatively low metabolic cost by utilizing sub-ambient pressure areas in the trough of body waves to generate thrust, effectively pulling themselves through the surrounding water. While this is understood at the fish’s preferred swimming speed, little is known about the mechanism over a full range of natural swimming speeds. We compared the swimming kinematics, hydrodynamics, and metabolic activity of juvenile coral catfish (Plotosus lineatus) across relative swimming speeds spanning two orders of magnitude from 0.2 to 2.0 body lengths (BL) per second. We used experimentally derived velocity fields to compute pressure fields and components of thrust along the body. At low speeds, thrust was primarily generated through positive pressure pushing forces. In contrast, increasing swimming speeds caused a shift in the recruitment of push and pull propulsive forces whereby sub-ambient pressure gradients contributed up to 87% of the total thrust produced during one tail-beat cycle past 0.5 BL s−1. This shift in thrust production corresponded to a sharp decline in the overall cost of transport and suggests that pull-dominated thrust in anguilliform swimmers is subject to a minimum threshold below which drag-based mechanisms are less effective.
Teneurin C-Terminal Associated Peptide (TCAP)-3 Increases Metabolic Activity in Zebrafish
Teneurin C-terminal associated peptides (TCAP), bioactive peptides located on the C-terminal end of teneurin proteins, have been shown to regulate stress axis functions due to the high conservation between TCAP and corticotropin releasing factor (CRF). Additionally, recent work demonstrated that TCAP can increase metabolism in rats via glucose metabolism. These metabolic actions are not well described in other organisms, including teleosts. Here we investigated the expression of a tcap isoform, tcap-3, and the potential role of TCAP-3 as a regulator of metabolism across zebrafish life-stages. Using pcr-based analyses, tcap-3 appears to be independently transcribed, in relation to teneurin-3, in muscle tissue of adult zebrafish. Resazurin, respirometry chambers, and mitochondrial metabolism analyses were used to study the metabolic effects of synthetic rainbow trout TCAP-3 (rtTCAP-3) in larval and adult zebrafish. Overall, metabolic activity was enhanced by 48 h of rtTCAP-3 treatment in larvae (bath immersion) and adults (intraperitoneal injections). This metabolic activity increase was due to mitochondrial uncoupling, as mitochondrial respiration increase by rtTCAP-3 was due to proton leak. Additionally, rtTCAP-3 protected larval fish from reduced metabolic activity induced by low temperatures. Subsequently, rtTCAP-3 increased metabolic output in adult zebrafish subjected to accelerated swimming speeds, demonstrating the potent role of rtTCAP-3 in zebrafish metabolism regulation during metabolic challenges. Collectively, these results demonstrate the conserved roles for rtTCAP-3 as a metabolic activator in zebrafish.
Fish specialize their metabolic performance to maximize bioenergetic efficiency in their local environment: conspecific comparison between two stocks of Pacific chub mackerel (Scomber japonicus)
Species-specific ecological traits in fishes are likely to vary between populations or stocks due to differences in regional oceanic conditions, such as latitudinal temperature. We examined potential intraspecific differences in the swimming performance and metabolism of Pacific chub mackerel ( Scomber japonicus ) from the Northwest and Northeast Pacific stocks, which are distributed on opposite sides of the North Pacific at similar latitudes, but where the temperature contrast is large. Swimming bioenergetics and metabolic data of Northwest stock mackerel were measured at 14, 18, and 24°C using variable-speed swim-tunnel respirometers, and then the resulting bioenergetic parameters were compared with previous findings from the Northeast stock. At a given size, the maximum sustainable swimming speed ( U max ) of the Northwest stock showed no significant difference compared to the Northeast stock at 18 and 24°C, but was lower at 14°C. In addition, the oxygen consumption rate ( M O2 ) of the Northwest stock showed lower mass dependence and different temperature dependence at a given swimming speed than in the Northeast stock. Combined with stock-specific data on growth and experienced temperatures in the wild, these bioenergetic differences indicate that the swimming performance and metabolism of the two stocks are specific to their local environment to maximize bioenergetic efficiency.
l-Carnitine ameliorates congenital myopathy in a tropomyosin 3 de novo mutation transgenic zebrafish
Congenital myopathy (CM) is a group of clinically and genetically heterogeneous muscle disorders, characterized by muscle weakness and hypotonia from birth. Currently, no definite treatment exists for CM. A de novo mutation in Tropomyosin 3-TPM3(E151G) was identified from a boy diagnosed with CM, previously TPM3(E151A) was reported to cause CM. However, the role of TPM3(E151G) in CM is unknown. Histopathological, swimming behavior, and muscle endurance were monitored in TPM3 wild-type and mutant transgenic fish, modelling CM. Gene expression profiling of muscle of the transgenic fish were studied through RNAseq, and mitochondria respiration was investigated. While TPM3(WT) and TPM3(E151A) fish show normal appearance, amazingly a few TPM3(E151G) fish display either no tail, a crooked body in both F0 and F1 adults. Using histochemical staining for the muscle biopsy, we found TPM3(E151G) displays congenital fiber type disproportion and TPM3(E151A) resembles nemaline myopathy. TPM3(E151G) transgenic fish dramatically swimming slower than those in TPM3(WT) and TPM3(E151A) fish measured by DanioVision and T-maze, and exhibit weaker muscle endurance by swimming tunnel instrument. Interestingly, l-carnitine treatment on TPM3(E151G) transgenic larvae significantly improves the muscle endurance by restoring the basal respiration and ATP levels in mitochondria. With RNAseq transcriptomic analysis of the expression profiling from the muscle specimens, it surprisingly discloses large downregulation of genes involved in pathways of sodium, potassium, and calcium channels, which can be rescued by l-carnitine treatment, fatty acid metabolism was differentially dysregulated in TPM3(E151G) fish and rescued by l-carnitine treatment. These results demonstrate that TPM3(E151G) and TPM3(E151A) exhibit different pathogenicity, also have distinct gene regulatory profiles but the ion channels were downregulated in both mutants, and provides a potential mechanism of action of TPM3 pathophysiology. Our results shed a new light in the future development of potential treatment for TPM3-related CM.
Physiological trade-offs associated with fasting weight loss, resistance to exercise and behavioral traits in farmed gilthead sea bream (Sparus aurata) selected by growth
Three gilthead sea bream families representative of slow, intermediate and fast heritable growth in the Spanish PROGENSA® selection program were used to uncover the effects of such selection on energy partitioning through measurements of fasting weight loss, swimming performance and behavioral traits in one- and two-year-old fish. Firstly, selection for fast growth significantly increased fasting weight loss and decreased the hormonal ratio of circulating Igf-i/Gh in short-term fasting fish (17 days). This is indicative of a stronger negative energy balance that explains the reduced compensatory growth of fast-growing fish during the subsequent short-term refeeding period (7 days). Selection for fast growth also decreased the critical speed (Ucrit, 6–7 BL s−1) at which fish become exhausted in a swim tunnel respirometer. The maximum metabolic rate (MMR), defined as the maximum rate of oxygen consumption during forced exercise, was almost equal in all fish families though the peak was achieved at a lowest speed in the fast-growing family. Since circulating levels of lactate were also slightly decreased in free-swimming fish of this family group, it appears likely that the relative energy contribution of anaerobic metabolism to physical activity was lowered in genetically fast-growing fish. Selection for heritable growth also altered activity behavior because slow-growing families displayed an anticipatory food response associated with more pronounced daily rhythms of physical activity. Also, respiratory frequency and body weight showed and opposite correlation in slow- and fast-growing free-swimming fish as part of the complex trade-offs of growth, behavior and energy metabolism. Altogether, these results indicate that selective breeding for fast growth might limit the anaerobic fitness that would help to cope with limited oxygen availability in a scenario of climate change.
Localized EMT reprograms glial progenitors to promote spinal cord repair
Anti-regenerative scarring obstructs spinal cord repair in mammals and presents a major hurdle for regenerative medicine. In contrast, adult zebrafish possess specialized glial cells that spontaneously repair spinal cord injuries by forming a pro-regenerative bridge across the severed tissue. To identify the mechanisms that regulate differential regenerative capacity between mammals and zebrafish, we first defined the molecular identity of zebrafish bridging glia and then performed cross-species comparisons with mammalian glia. Our transcriptomics show that pro-regenerative zebrafish glia activate an epithelial-to-mesenchymal transition (EMT) gene program and that EMT gene expression is a major factor distinguishing mammalian and zebrafish glia. Functionally, we found that localized niches of glial progenitors undergo EMT after spinal cord injury in zebrafish and, using large-scale CRISPR-Cas9 mutagenesis, we identified the gene regulatory network that activates EMT and drives functional regeneration. Thus, non-regenerative mammalian glia lack an essential EMT-driving gene regulatory network that reprograms pro-regenerative zebrafish glia after injury.
The effects of temperature acclimation on swimming performance in the pelagic Mahi-mahi (Coryphaena hippurus)
Mahi-mahi (Coryphaena hippurus) are a highly migratory pelagic fish, but little is known about what environmental factors drive their broad distribution. This study examined how temperature influences aerobic scope and swimming performance in mahi. Mahi were acclimated to four temperatures spanning their natural range (20, 24, 28, and 32{\deg}C; 5-27 days) and critical swimming speed (Ucrit), metabolic rates, aerobic scope, and optimal swim speed were measured. Aerobic scope and Ucrit were highest in 28{\deg}C-acclimated fish. 20{\deg}C-acclimated mahi experienced significantly decreased aerobic scope and Ucrit relative to 28{\deg}C-acclimated fish (57 and 28% declines, respectively). 32{\deg}C-acclimated mahi experienced increased mortality and a significant 23% decline in Ucrit, and a trend for a 26% decline in factorial aerobic scope relative to 28{\deg}C-acclimated fish. Absolute aerobic scope showed a similar pattern to factorial aerobic scope. Our results are generally in agreement with previously observed distribution patterns for wild fish. Although thermal performance can vary across life stages, the highest tested swim performance and aerobic scope found in the present study (28{\deg}C), aligns with recently observed habitat utilization patterns for wild mahi and could be relevant for climate change predictions.
Swimming Performance of Four Carps on the Yangtze River for Fish Passage Design
Anthropogenic engineered structures alter the local ecological connectivity of river and survival habitat of native fishes. The swimming performance is critical for establishing fish passage or fish habitat. This study evaluated the swimming performance of four carps (black carp, grass carp, silver carp and bighead carp) with smaller body lengths (1.0–9.0 cm) in a swimming flume. The results showed that the critical and burst swimming speed (m/s) of the four carps increased with the increased body length, and the relative (critical and burst) swimming speed (the critical and burst swimming speed divided by the body length, BL/s) decreases with body length. The critical and burst swimming speed of each species at two individual length groups (1.0–5.0 cm, 5.1–9.0 cm) was significantly different (p
Comparative swimming performance and behaviour of three benthic fish species: The invasive round goby (Neogobius melanostomus), the native bullhead (Cottus gobio), and the native gudgeon (Gobio gobio)
Efforts to restore river ecosystem connectivity focus predominantly on diadromous, economically important fish species, and less attention is given to nonmigratory, small‐bodied, benthic fish species. Data on benthic fish swimming performance and behaviour in comparison with ecologically similar native species are especially relevant for the study of one of the most successful invaders in the last decades: the Ponto‐Caspian gobiid species Neogobius melanostomus. To evaluate future measures against its further upstream dispersal, we conducted comparative swimming performance and behaviour experiments with round goby and two native species: the European bullhead ( Cottus gobio ) and the gudgeon ( Gobio gobio ). Experiments in a swim tunnel revealed a high variation in the swimming performance and behaviour within and among the three species. Gudgeon performed best in both U crit and U sprint experiments and displayed a rather continuous, subcarangiform swimming mode, whereas bullhead and round goby displayed a burst‐and‐hold swimming mode. Experiments in a vertical slot pass model, which contained a hydraulic barrier as a challenge to upstream movement, confirmed the high swimming performance of gudgeon. Gudgeon dispersed upstream even across the hydraulic barrier at the highest flow velocities. Round goby showed a higher capability to disperse upstream than bullhead, but failed to pass the hydraulic barrier. Our results on comparative swimming performance and behaviour can inform predictive distribution modelling and range expansion models, and also inform the design of selective barriers to prevent the round goby from dispersing farther upstream.
Exposure to nitrate increases susceptibility to hypoxia in fish
Aquatic hypoxic events are increasing in frequency and intensity as concentrations of nutrients, such as nitrate, continue to rise from human activities. Many fish species can alter their behavior and physiology to cope with drops in oxygen, but these compensatory strategies may be compromised under high levels of nitrate pollution. Hence, we investigated whether exposure to elevated nitrate concentrations affects key behavioral (avoidance and aquatic surface respiration [ASR]) and physiological (hemoglobin and hematocrit levels, ventilation frequency, and burst and prolonged swimming performance) responses of fish to mitigate the impacts of acute hypoxia. Juvenile silver perch ( Bidyanus bidyanus ) were exposed to one of three nitrate concentrations (0, 50, or 100 mg NO 3 - L -1 ) for 3 wk, after which behavioral and physiological responses of fish to progressive hypoxia were assessed. Fish exposed to nitrate utilized ASR at a higher threshold of partial pressure of oxygen during progressive hypoxia compared with control animals but did not alter behavioral avoidance of low oxygen levels. In these nitrate-exposed fish, the early onset of ASR behaviors is likely a behavioral, compensatory strategy to cope with nitrate-induced physiological disruptions, namely, increases in ventilation frequency and lower levels of hemoglobin and hematocrit. The physiological constraints placed by nitrate and acute hypoxia exposures manifested to lower the swimming performance of silver perch. Collectively, these data suggest that exposure to elevated nitrate is likely to disrupt key behavioral and physiological strategies used by fish to cope with short-term hypoxia.
The pharmaceutical prednisone affects sheepshead minnow (Cyprinodon variegatus) metabolism and swimming performance
As a crucial step in developing a bioenergetics model for Pacific Chub Mackerel Scomber japonicus (hereafter chub mackerel), parameters related to metabolism, the largest dissipation term in bioenergetics modelling, were estimated. Swimming energetics and metabolic data for nine chub mackerel were collected at 14°C, a low temperature within the typical thermal range of this species, using variable‐speed swim‐tunnel respirometry. These new data were combined with previous speed‐dependent metabolic data at 18 and 24°C and single‐speed (1 fork length per second: FL/s ) metabolic data at 15 and 20°C to estimate respiration parameters for model development. Based on the combined data, the optimal swimming speed (the swimming speed with the minimum cost of transport, U opt ) was 42.5 cm/s (1.5–3.0 FL/s or 2.1 ± 0.4 FL/s ) and showed no significant dependence on temperature or fish size. The daily mass‐specific oxygen consumption rate ( R, g O 2 g fish −1 day −1 ) was expressed as a function of fish mass ( W ), temperature ( T ) and swimming speed ( U ): R = 0.0103 W −0.490 e (0.0457 T ) e (0.0235 U ). Compared to other small pelagic fishes such as Pacific Herring Clupea harengus pallasii, Pacific Sardine Sardinops sagax and various anchovy species, chub mackerel respiration showed a lower dependence on fish mass, temperature and swimming speed, suggesting a greater swimming ability and lower sensitivity to environmental temperature variation.
Vortex phase matching as a strategy for schooling in robots and in fish
It has long been proposed that flying and swimming animals could exploit neighbour-induced flows. Despite this it is still not clear whether, and if so how, schooling fish coordinate their movement to benefit from the vortices shed by others. To address this we developed bio-mimetic fish-like robots which allow us to measure directly the energy consumption associated with swimming together in pairs (the most common natural configuration in schooling fish). We find that followers, in any relative position to a near-neighbour, could obtain hydrodynamic benefits if they exhibit a tailbeat phase difference that varies linearly with front-back distance, a strategy we term ‘vortex phase matching’. Experiments with pairs of freely-swimming fish reveal that followers exhibit this strategy, and that doing so requires neither a functioning visual nor lateral line system. Our results are consistent with the hypothesis that fish typically, but not exclusively, use vortex phase matching to save energy. Whether and how fish might benefit from swimming in schools is an ongoing intriguing debate. Li et al. conduct experiments with biomimetic robots and also with real fish to reveal a new behavioural strategy by which followers can exploit the vortices shed by a near neighbour.
Thermal acclimation offsets the negative effects of nitrate on aerobic scope and performance
Rising temperatures are set to imperil freshwater fishes as climate change ensues unless compensatory strategies are employed. However, the presence of additional stressors, such as elevated nitrate concentrations, may affect the efficacy of compensatory responses. Here, juvenile silver perch (Bidyanus bidyanus) were exposed to current-day summer temperatures (28oC) or a future climate-warming scenario (32oC) and simultaneously exposed to one of three ecologically relevant nitrate concentrations (0, 50 or 100 mg L−1). We measured indicators of fish performance (growth, swimming), aerobic scope (AS) and upper thermal tolerance (CTMAX) to test the hypothesis that nitrate exposure would increase susceptibility to elevated temperatures and limit thermal compensatory responses. After 8 weeks of acclimation, the thermal sensitivity and plasticity of AS and swimming performance were tested at three test temperatures (28, 32, 36oC). The AS of 28oC-acclimated fish declined with increasing temperature, and the effect was more pronounced in nitrate exposed individuals. In these fish, declines in AS corresponded with poorer swimming performance and a 0.8oC decrease in CTMAX compared to unexposed fish. In contrast, acclimation to 32oC masked the effects of nitrate; fish acclimated to 32oC displayed a thermally insensitive phenotype whereby locomotor performance remained unchanged, AS was maintained and CTMAX was increased by ∼1oC irrespective of nitrate treatment compared to fish acclimated to 28oC. Growth was however markedly reduced in 32oC-acclimated compared to 28oC-acclimated fish. Our results indicate that nitrate exposure increases the susceptibility of fish to acute high temperatures, but thermal compensation can override some of these potential detrimental effects.
Hypoxia tolerance is unrelated to swimming metabolism of wild, juvenile striped bass (Morone saxatilis)
Juvenile striped bass reside in the Chesapeake Bay where they are likely to encounter hypoxia that could affect their metabolism and performance. The ecological success of this economically valuable species may depend on their ability to tolerate hypoxia and perform fitness-dependent activities in hypoxic waters. We tested whether there is a link between hypoxia tolerance (HT) and oxygen consumption rate (ṀO2) of juvenile striped bass measured while swimming in normoxic and hypoxic water, and to identify the interindividual variation and repeatability of these measurements. Fish (N=18) had their HT (loss of equilibrium) measured twice collectively, 11 weeks apart, between which each fish had their ṀO2 measured individually while swimming in low flow (10.2 cm s−1) and high flow (∼ 67% Ucrit) under normoxia and hypoxia. Both HT and ṀO2 varied substantially among individuals. HT increased across 11 weeks while the rank order of individual HT was significantly repeatable. Similarly, ṀO2 increased in fish swimming at high flow in a repeatable fashion, but only within a given level of oxygenation. ṀO2 was significantly lower when fish were swimming against high flow under hypoxia. There were no clear relationships between HT and a fish's ṀO2 while swimming under any conditions. Only the magnitude of increase in HT over 11 weeks and an individual's ṀO2 under low flow were correlated. The results suggest that responses to the interacting stressors of hypoxia and exercise vary among individuals, and that HT and change in HT are not simple functions of aerobic metabolic rate.
Physiological insights for aquaculture diversification: Swimming capacity and efficiency, and metabolic scope for activity in cojinoba Seriolella violacea
To forage in fast, turbulent flow environments where prey is abundant, fishes must deal with the high associated costs of locomotion. Prevailing theory suggests that many species exploit hydrodynamic refuges to minimize the cost of locomotion while foraging. Here, we challenge this theory based on direct oxygen consumption measurements of drift-feeding trout (Oncorhynchus mykiss) foraging in the freestream and from behind a flow refuge at velocities up to 100 cm s−1. We demonstrate that refuging is not energetically beneficial when foraging in fast flows because of a high attack cost and low prey capture success associated with leaving a station-holding refuge to intercept prey. By integrating optimum foraging theory with empirical data from respirometry and video tracking, we developed a mathematical model to predict when drift-feeding fishes should exploit or avoid refuges based on prey density, size and flow velocity. Our optimum foraging and refuging model provides new mechanistic insights into locomotor costs, habitat use and prey choice of fish foraging in current-swept habitats.
Exposure to Hydraulic Fracturing Flowback Water Impairs Mahi-Mahi (Coryphaena hippurus) Cardiomyocyte Contractile Function and Swimming Performance
Publicly available toxicological studies on wastewaters associated with unconventional oil and gas (UOG) activities in offshore regions are nonexistent. The current study investigated the impact of hydraulic fracturing-generated flowback water (HF-FW) on whole organism swimming performance/respiration and cardiomyocyte contractility dynamics in mahi-mahi ( Coryphaena hippurus -hereafter referred to as "mahi"), an organism which inhabits marine ecosystems where offshore hydraulic fracturing activity is intensifying. Following exposure to 2.75% HF-FW for 24 h, mahi displayed significantly reduced critical swimming speeds ( U crit ) and aerobic scopes (reductions of ∼40 and 61%, respectively) compared to control fish. Additionally, cardiomyocyte exposures to the same HF-FW sample at 2% dilutions reduced a multitude of mahi sarcomere contraction properties at various stimulation frequencies compared to all other treatment groups, including an approximate 40% decrease in sarcomere contraction size and a nearly 50% reduction in sarcomere relaxation velocity compared to controls. An approximate 8-fold change in expression of the cardiac contractile regulatory gene cmlc2 was also seen in ventricles from 2.75% HF-FW-exposed mahi. These results collectively identify cardiac function as a target for HF-FW toxicity and provide some of the first published data on UOG toxicity in a marine species.
Flow field-induced drag forces and swimming behavior of three benthic fish species
Modern ethohydraulics is the study of the behavioral responses of swimming fish to flow fields. However, the exact drag forces experienced by fish remain poorly studied; this information is required to obtain a better understanding of the behavioral responses of fish and their current resistance strategies. We measured near-ground frontal drag forces on preserved individuals of three benthic fish species, round goby (Neogobius melanstomus), gudgeon (Gobio gobio) and bullhead (Cottus gobio), in a flow channel. The forces were compared to acoustic Doppler velocity (ADV) measurements and fish tracking data based on video observations of live fish in the flow channel. Overall, we observed drag coefficients (CD) of ∼10$^{-3}$ at Reynolds numbers ∼10$^{5}$. The frontal drag forces acting on preserved fish with non-spread fins ranged from -1.96 mN*g$^{-1}$ (force per fish wet weight, velocity 0.55 m*s$^{-1}$) to 11.01 mN*g$^{-1}$ (velocity 0.85 m*s$^{-1}$). Spreading the fins strongly increased the drag forces for bullhead and round goby. In contrast, the drag forces were similar for gudgeon with spread fins and all fish with non-spread fins. Video tracking revealed no clear relationship between the position of the fish in the flow field and the forces experienced by the preserved fish at these positions. Collectively, these results suggest that i) the differences in frontal drag forces between species are small in homogenous flow, ii) individuals chose their position in the flow field based on factors other than the drag forces experienced, and iii) whether fins are spread or non-spread is an essential quality that modulates species-specific differences. The methodology and results of this study will enable integration of flow measurements, fish behavior and force measurements and inform ethohydraulics research. More advanced force measurements will lead to a detailed understanding of the current resistance strategies of benthic fish and improve the design of fish passes.
Behaviour and ability of a cyprinid (Schizopygopsis younghusbandi) to cope with accelerating flows when migrating downstream
The migration corridors in regulated rivers lead downstream fish migrants, particularly juveniles to pass through water infrastructure. Accelerating flow, experienced by fish, might trigger avoidance behaviour and then influence the downstream migration efficacy. It is essential to understand the causes of avoidance behaviour exhibited by downstream migratory fish in accelerating flow. In this study, the effect of three different accelerating flows on the downstream migration behaviour of Schizopygopsis younghusbandi ( S.Y ) was investigated using a constriction wedge in a circulating flume. The results showed that some fish (30%, 23%, and 39% under low, medium, and high flow conditions, respectively) repeatedly attempted to burst upstream with positive rheotaxis prior to successful passage downstream. Under the low‐, medium‐, and high‐accelerating levels, the average fish swimming speeds were 89.19, 91.28, and 111.94 cm/s, respectively; these values were close to the critical swimming speed (110.42 cm/s) of the target fish. The water velocities at the fish avoidance points were centrally distributed at approximately 73.03 cm/s. Regarding turbulence, the results exhibited that the S.Y generally responded to a discrete range of <50 cm 2 /s 2 of turbulent kinetic energy and < 2 N/m 2 of the horizontal component of the Reynolds shear stress (RSS xy ). Also, the fish that exhibited avoidance behaviour were not centrally distributed in the lateral and longitudinal velocity locations, where there was an abrupt change in the gradient. This study highlighted the impact of accelerating flow on the downstream fish migration behaviour of a cyprinid. Furthermore, this study quantified the hydraulic factors that triggered this avoidance. Thus, it provided experimental support for optimizing the design of the hydraulic factors for downstream fishways.
The metabolic rate response to feed withdrawal in Atlantic salmon post-smolts
Feed withdrawal is a widespread practice in Atlantic salmon (Salmo salar) aquaculture to empty the gut prior to major farming operations, while certain pathogens and suboptimal environmental conditions in production cages are known to induce prolonged fasting. However, these fasting periods may be in conflict with ethical and legal obligations to farm animals. Presently, science-based recommendations on responsible fasting times that consider fish welfare are lacking. In this study, we measured the standard metabolic rate (SMR) and metabolic rate following acute handling and confinement stress in Atlantic salmon post smolts (~575 g, ~38 cm) following 1, 2, 3 and 4 weeks of feed withdrawal and 1 week of subsequent refeeding at 12 °C. The purpose was to identify when changes in metabolic mode occurred and assess whether the capacity to respond to stress eventually was compromised, since such observations could serve as potential welfare indicators. The SMR decreased significantly from 84.4 ± 4.7 mg O2 kg h−1 in control fish to 71.0 ± 1.8 mg O2 kg h−1 following 1 week of fasting. A further significant decrease to 65.0 ± 3.7 mg O2 kg h−1 was measured after 3 weeks, while refeeding returned SMR to control levels. The increase in MO2 following acute stress was unaffected for the first three weeks of fasting. However, the 4 week group showed a reduced peak response compared to the preceding weeks (278 ± 13 vs. 310 ± 7 mg O2 kg h−1). Weight, fork length and condition factor did not change significantly during the fasting period, and the fish immediately resumed eating upon refeeding. We conclude that up to 4 weeks of feed withdrawal had negligible effects on fish welfare. Moreover, an improved aerobic scope owing to a reduced SMR may be advantageous prior to certain farm operations.
Synergism between elevated temperature and nitrate: Impact on aerobic capacity of European grayling, Thymallus thymallus in warm, eutrophic waters
From operculum and body tail movements to different coupling of physical activity and respiratory frequency in farmed gilthead sea bream and European sea bass. Insights on aquaculture biosensing
Physiological features of species can determine the resilience and adaptation of organisms to the environment. Swimming capacity and metabolic traits are key factors for fish survival, mating and predator–prey interactions. Individuals of the same species can display high phenotypic variation often in response to varying environmental conditions. We investigated the effects of captive breeding conditions on swimming capacity, metabolic traits and morphology by comparing a captive population with a wild population of the endangered Spanish toothcarp (Aphanius iberus). We measured swimming capabilities and oxygen‐uptake rates simultaneously, the latter as a proxy for metabolic rate, using a swim tunnel respirometer. Results showed significant differences in standard metabolic rate (SMR), maximum metabolic rate (MMR) and absolute aerobic scope (AAS) between populations, as well as differences in morphological features between populations and sexes. In contrast, we did not find significant differences in critical swimming speed between populations or sexes. Differences in SMR between sexes were found in the captive population, and males showed nearly a twofold increase in SMR when compared with females. SMR, MMR and AAS were, on average, twofold lower for the captive population in comparison with the wild population. These differences in metabolic traits likely reflected captivity conditions, which were low food availability and the absence of predators, which in turn, may have influenced morphological traits, such as body and caudal peduncle shape and head size. At the same time, morphological traits also influenced metabolic traits of the populations. The lower SMR and MMR of captive individuals may be related to their deeper body shapes. Taken together, our results suggested that captive breeding conditions caused significant physiological and morphological changes in the endangered Spanish toothcarp. Reduced metabolic traits and changes in morphology may affect fitness‐related traits of the captive populations once reintroduced into the wild, thereby compromising conservation efforts. We therefore recommend to experimentally testing for the effects and consequences of captive breeding conditions
Behavioral Characterization of dmrt3a Mutant Zebrafish Reveals Crucial Aspects of Vertebrate Locomotion through Phenotypes Related to Acceleration
Vertebrate locomotion is orchestrated by spinal interneurons making up a central pattern generator. Proper coordination of activity, both within and between segments, is required to generate the desired locomotor output. This coordination is altered during acceleration to ensure the correct recruitment of muscles for the chosen speed. The transcription factor Dmrt3 has been proposed to shape the patterned output at different gaits in horses and mice. Here, we characterized dmrt3a mutant zebrafish, which showed a strong, transient, locomotor phenotype in developing larvae. During beat-and-glide swimming, mutant larvae showed fewer and shorter movements with decreased velocity and acceleration. Developmental compensation likely occurs as the analyzed behaviors did not differ from wild-type at older larval stages. However, analysis of maximum swim speed in juveniles suggests that some defects persist within the mature locomotor network of dmrt3a mutants. Our results reveal the pivotal role Dmrt3 neurons play in shaping the patterned output during acceleration in vertebrates.
Study on the swimming ability of endemic fish in the lower reaches of the Yangtze River: A case study
The swimming abilities of Spinibarbus hollandi, Siniperca chuatsi, Siniperca loona, Odontobutis sinensis and Rhinogobius giurinus were tested in this study, including induced swimming speed (Uind), critical swimming speed (Ucrit) and constant acceleration test speed (UCAT). The results showed that the Uind of the experimental fish in the Huishui River ranged from 5 to 30 cm/s. The average Ucrit of fish was 68.2 cm/s and 5 times the average Uind. The average UCAT was 97.6 cm/s and 7 times the Uind. The swimming speed of fish is related to their body size. The results showed that the swimming speed was more correlated with the shape than the body length of fish. The relationships between the three speeds and the shape of the experimental fish wereUind=9.809S0.128Ucrit=37.954S0.185, andUCAT=58.418S0.099. The differences in Uind between the five fishes were not obvious, while there were significant differences in Ucrit and UCAT between the five fish species. The results of this study suggested that Spinibarbus hollandi, Siniperca chuatsi, and Siniperca loona have stronger swimming abilities than Odontobutis sinensis and Rhinogobius giurinus.
Effects of hypoxia on the behavior and physiology of kelp forest fishes
Forecasts from climate models and oceanographic observations indicate increasing deoxygenation in the global oceans and an elevated frequency and intensity of hypoxic events in the coastal zone, which have the potential to affect marine biodiversity and fisheries. Exposure to low dissolved oxygen (DO) conditions may have deleterious effects on early life stages in fishes. This study aims to identify thresholds to hypoxia while testing behavioral and physiological responses of two congeneric species of kelp forest fish to four DO levels, ranging from normoxic to hypoxic (8.7, 6.0, 4.1, and 2.2 mg O 2 /L). Behavioral tests identified changes in exploratory behavior and turning bias (lateralization), whereas physiological tests focused on determining changes in hypoxia tolerance (pCrit), ventilation rates, and metabolic rates, with impacts on the resulting capacity for aerobic activity. Our findings indicated that copper rockfish ( Sebastes caurinus ) and blue rockfish ( Sebastes mystinus ) express sensitivity to hypoxia; however, the strength of the response differed between species. Copper rockfish exhibited reduced absolute lateralization and increased escape time at the lowest DO levels, whereas behavioral metrics for blue rockfish did not vary with oxygen level. Both species exhibited decreases in aerobic scope (as a function of reduced maximum metabolic rate) and increases in ventilation rates to compensate for decreasing oxygen levels. Blue rockfish had a lower pCrit and stronger acclimation response compared to copper rockfish. The differences expressed by each species suggest that acclimatization to changing ocean conditions may vary, even among related species that recruit to the same kelp forest habitat, leading to winners and losers under future ocean conditions. Exposure to hypoxia can decrease individual physiological fitness through metabolic and aerobic depression and changes to anti‐predator behavior, with implications for the outcome of ecological interactions and the management of fish stocks in the face of climate change.
Size-related effects and the influence of metabolic traits and morphology on swimming performance in fish
Energy metabolism fuels swimming and other biological processes. We compared the swimming performance and energy metabolism within and across eight freshwater fish species. Using swim tunnel respirometers, we measured the standard metabolic rate (SMR) and maximum metabolic rate (MMR) and calculated the critical swimming speed (Ucrit). We accounted for body size, metabolic traits, and some morphometric ratios in an effort to understand the extent and underlying causes of variation. Body mass was largely the best predictor of swimming capacity and metabolic traits within species. Moreover, we found that predictive models using total length or SMR, in addition to body mass, significantly increased the explained variation of Ucrit and MMR in certain fish species. These predictive models also underlined that, once body mass has been accounted for, Ucrit can be independently affected by total length or MMR. This study exemplifies the utility of multiple regression models to assess within-species variability. At interspecific level, our results showed that variation in Ucrit can partly be explained by the variation in the interrelated traits of MMR, fineness, and muscle ratios. Among the species studied, bleak Alburnus alburnus performed best in terms of swimming performance and efficiency. By contrast, pumpkinseed Lepomis gibbosus showed very poor swimming performance, but attained lower mass-specific cost of transport (MCOT) than some rheophilic species, possibly reflecting a cost reduction strategy to compensate for hydrodynamic disadvantages. In conclusion, this study provides insight into the key factors influencing the swimming performance of fish at both intra- and interspecific levels.
Thermal variation near the thermal optimum does not affect the growth, metabolism or swimming performance in wild Atlantic salmon (Salmo salar)
Typically, laboratory studies on the physiological effects of temperature are conducted using stable acclimation temperatures. However, information extrapolated from these studies may not accurately represent wild populations living in thermally variable environments. Our objective was to compare the growth, metabolism, and swimming performance of wild Atlantic salmon exposed to cycling 16-21o C, and stable 16o C, 18.5o C, 21o C acclimation temperatures. Growth rate, metabolic rate, swimming performance, and anaerobic metabolites did not change among acclimation groups, suggesting that within Atlantic salmon's thermal optimum range, temperature variation has no effect on these physiological properties. This article is protected by copyright. All rights reserved.
Temperature and food availability alters the physiology and aerobic capacity of tambaqui (Colossoma macropomum)
Extensions of species’ geographical distributions, or range extensions, are among the primary ecological responses to climate change in the oceans. Considerable variation across the rates at which species’ ranges change with temperature hinders our ability to forecast range extensions based on climate data alone. To better manage the consequences of ongoing and future range extensions for global marine biodiversity, more information is needed on the biological mechanisms that link temperatures to range limits. This is especially important at understudied, low relative temperatures relevant to poleward range extensions, which appear to outpace warm range edge contractions four times over. Here, we capitalized on the ongoing range extension of a teleost predator, the Australasian snapper Chrysophrys auratus, to examine multiple measures of ecologically relevant physiological performance at the population’s poleward range extension front. Swim tunnel respirometry was used to determine how mid-range and poleward range edge winter acclimation temperatures affect metabolic rate, aerobic scope, swimming performance and efficiency and recovery from exercise. Relative to ‘optimal’ mid-range temperature acclimation, subsequent range edge minimum temperature acclimation resulted in absolute aerobic scope decreasing while factorial aerobic scope increased; efficiency of swimming increased while maximum sustainable swimming speed decreased; and recovery from exercise required a longer duration despite lower oxygen payback. Cold-acclimated swimming faster than 0.9 body lengths sec−1 required a greater proportion of aerobic scope despite decreased cost of transport. Reduced aerobic scope did not account for declines in recovery and lower maximum sustainable swimming speed. These results suggest that while performances decline at range edge minimum temperatures, cold-acclimated snapper are optimized for energy savings and range edge limitation may arise from suboptimal temperature exposure throughout the year rather than acute minimum temperature exposure. We propose incorporating performance data with in situ behaviour and environmental data in bioenergetic models to better understand how thermal tolerance determines range limits.
Long-term exposure to low 17α-ethinylestradiol (EE2) concentrations disrupts both the reproductive and the immune system of juvenile rainbow trout, Oncorhynchus mykiss
Estrogenic endocrine disrupting compounds (EEDCs), such as ethinylestradiol (EE2), are well studied for their impact on the reproductive system of fish. EEDCs may also impact the immune system and, as a consequence, the disease susceptibility of fish. It is currently not yet known whether the low concentrations of EEDCs that are able to disrupt the reproductive system of trout are effective in disrupting the immune system and the fish host resistance towards pathogens, too, or whether such immunodisruptive effects would occur only at higher EEDC concentrations. Therefore, in the present study we compare the effect thresholds of low 17α-ethinylestradiol concentrations (1.5 and 5.5 EE2 ng/L) on the reproductive system, the immune system, the energy expenditures and the resistance of juvenile rainbow trout (Oncorhynchus mykiss) against the parasite Tetracapsuloides bryosalmonae - the etiological agent of proliferative kidney disease (PKD) of salmonids. The parasite infection was conducted without injection and under low pathogen exposure concentrations. The disease development was followed over 130 days post infection - in the presence or absence of EE2 exposure. The results show that the long-term EE2 exposure affected, at both concentrations, reproductive parameters like the mRNA levels of hepatic vitellogenin and estrogen receptors. At the same concentrations, EE2 exposure modulated the immune parameters: mRNA levels of several immune genes were altered and the parasite intensity as well as the disease severity (histopathology) were significantly reduced in EE2-exposed fish compared to infected control fish. The combination of EE2 exposure and parasite infection was energetically costly, as indicated by the decreased values of the swim tunnel respirometry. Although further substantiation is needed, our findings suggest that EE2 exerts endocrine disruptive and immunomodulating activities at comparable effect thresholds, since reproductive and immune parameters were affected by the same, low EE2 concentrations.
The metabolism and swimming performance of sheepshead minnows (Cyprinodon variegatus) following thermal acclimation or acute thermal exposure
Ectothermic animals are especially susceptible to temperature change, considering that their metabolism and core temperature are linked to the environmental temperature. As global water temperatures continue to increase, so does the need to understand the capacity of organisms to tolerate change. Sheepshead minnows (Cyprinodon variegatus) are the most eurythermic fish species known to date and can tolerate a wide range of environmental temperatures from − 1.9 to 43.0 °C. But little is known about the physiological adjustments that occur when these fish are subjected to acute thermal challenges and long-term thermal acclimation. Minnows were acclimated to 10, 21, or 32 °C for 4 weeks or acutely exposed to 10 and 32 °C and then assessed for swimming performance [maximum sustained swimming velocity (Ucrit), optimum swimming velocity (Uopt)] and metabolic endpoints (extrapolated standard and maximum metabolic rate [SMR, MMR), absolute aerobic scope (AS), and cost of transport (COT)]. Our findings show that the duration of thermal exposure (acute vs. acclimation) did not influence swimming performance. Rather, swimming performance was influenced by the exposure temperature. Swimming performance was statistically similar in fish exposed to 21 or 32 °C (approximately 7.0 BL s−1), but was drastically reduced in fish exposed to 10 °C (approximately 2.0 BL s−1), resulting in a left-skewed performance curve. There was no difference in metabolic end points between fish acutely exposed or acclimated to 10 °C. However, a different pattern was observed in fish exposed to 32 °C. MMR was similar between acutely exposed or acclimated fish, but acclimated fish had a 50% reduction in extrapolated SMR, which increased AS by 25%. However, this enhanced AS was not associated with changes in swimming performance, which opposes the oxygen-capacity limited thermal tolerance concept. Our findings suggest that sheepshead minnows may utilize two distinct acclimation strategies, resulting in different swimming performance and metabolic patterns observed between 10 and 32 °C exposures.
Post-exercise respirometry underestimates maximum metabolic rate in juvenile salmon
Experimental biologists now routinely quantify maximum metabolic rate (MMR) in fishes using respirometry, often with the goal of calculating aerobic scope and answering important ecological and evolutionary questions. Methods used for estimating MMR vary considerably, with the two most common methods being (i) the ‘chase method’, where fish are manually chased to exhaustion and immediately sealed into a respirometer for post-exercise measurement of oxygen consumption rate (ṀO2), and (ii) the ‘swim tunnel method’, whereby ṀO2 is measured while the fish swims at high speed in a swim tunnel respirometer. In this study, we compared estimates for MMR made using a 3-min exhaustive chase (followed by measurement of ṀO2 in a static respirometer) versus those made via maximal swimming in a swim tunnel respirometer. We made a total of 134 estimates of MMR using the two methods with juveniles of two salmonids (Atlantic salmon Salmo salar and Chinook salmon Oncorhynchus tshawytscha) across a 6°C temperature range. We found that the chase method underestimated ‘true’ MMR (based on the swim tunnel method) by ca. 20% in these species. The gap in MMR estimates between the two methods was not significantly affected by temperature (range of ca. 15–21°C) nor was it affected by body mass (overall range of 53.5–236 g). Our data support some previous studies that have suggested the use of a swim tunnel respirometer generates markedly higher estimates of MMR than does the chase method, at least for species in which a swim tunnel respirometer is viable (e.g. ‘athletic’ ram ventilating fishes). We recommend that the chase method could be used as a ‘proxy’ (i.e. with a correction factor) for MMR in future studies if supported by a species-specific calibration with a relevant range of temperatures, body sizes or other covariates of interest.
Impaired fish swimming performance following dietary exposure to the marine phycotoxin okadaic acid
Marine organisms living at low temperatures tend to have larger genomes and larger cells which suggest that these traits can be beneficial in colder environments. In fish, triploidy (three complete sets of chromosomes) can be induced experimentally following fertilization, which provides a model system to investigate the hypothesis that larger cells and genomes offers a physiological advantage at low temperatures. We tested this hypothesis by measuring metabolic rates and swimming performance of diploid and triploid Atlantic salmon (Salmo salar) post smolts acclimated to 3 or 10.5 °C. At 10.5 °C, triploids had significantly lower maximum metabolic rates which resulted in a lower aerobic scope compared to diploids. In addition, triploids initiated ram ventilation at lower swimming speeds, providing further evidence of a reduced capacity to meet oxygen demands during strenuous activity at 10.5 °C. However, at 3 °C, metabolic rates and critical swimming speeds were similar between both ploidies, and as expected substantially lower than at 10.5 °C. Therefore, triploidy in colder environments did not provide any advantage over diploidy in terms of metabolic rate traits or swimming performance in Atlantic salmon. We therefore conclude that traits, other than aerobic scope and swimming performance, contribute to the trend for increased cell and genome size in marine ectotherms living in cold environments.
The effect of sensory feedback topology on the entrainment of a neural oscillator with a compliant foil for swimming systems
The sensorimotor system of fish endows them with remarkable swimming performance that is unmatched by current underwater robotic vehicles. To close the gap between the capabilities of fish and the capabilities of underwater vehicles engineers are investigating how fish swim. In particular, engineers are exploring the sensorimotor systems of fish that control the motion of fins. It is generally accepted that specialized neural circuits (known as central pattern generators) within the sensorimotor system produce the periodic drive signal that is used to control the motion of fins. An important aspect of these circuits is that their output signal can be modified by sensory feedback. Specifically, the way in which sensory feedback signals are applied to a CPG (i.e. the sensory feedback topology) affects the CPG’s entrainment characteristics. This has been shown in simulation but has not been investigated in a robot interacting in the real-world. Furthermore, CPG-based control has only limitedly been applied to fish like robots and many questions remain as to how it should be applied to these types of systems. In this work we examine the effect of sensory feedback topology on the entrainment characteristics of a CPG-based neural oscillator driving three different foils swimming in flow. Additionally, we investigate how sensory feedback should be acquired from a foil and applied to a neural oscillator to promote beneficial swimming characteristics.
Can the impacts of cold-water pollution on fish be mitigated by thermal plasticity?
Increasingly, cold-water pollution (CWP) is being recognised as a significant threat to aquatic communities downstream of large, bottom-release dams. Cold water releases typically occur during summer when storage dams release unseasonably cold and anoxic hypolimnetic waters, which can decrease the temperature of downstream waters by up to 16°C. Depending on the release duration, these hypothermic conditions can persist for many months. The capacity of ectothermic species to tolerate or rapidly adjust to acute temperature changes may determine the nature and magnitude of the impact of CWP on affected species. This study assessed the impacts of an acute reduction in water temperature on the physiological function and locomotor performance of juvenile silver perch (Bidyanus bidyanus) and examined their capacity to thermally compensate for the depressive effects of low temperatures via phenotypic plasticity. Locomotor performance (Ucrit and Usprint) and energetic costs (routine and maximum metabolic rate) were measured at multiple points over a 10-week period following an abrupt 10°C drop in water temperature. We also measured the thermal sensitivity of metabolic enzymes from muscle samples taken from fish following the exposure period. Cold exposure had significant depressive effects on physiological traits, resulting in decreases in performance between 10% and 55%. Although there was partial acclimation of Ucrit (~35% increase in performance) and complete compensation of metabolic rate, this occurred late in the exposure period, meaning silver perch were unable to rapidly compensate for the depressive effects of thermal pollution. The results of this study have substantial implications for the management of cold water releases from large-scale dams and the conservation of native freshwater fish species, as this form of thermal pollution can act as a barrier to fish movement, cause reduced recruitment, ecological community shifts and disruptions to timing and success of reproduction.
Polyvinylpyrolidone-functionalized silver nanoparticles do not affect aerobic performance or fractional rates of protein synthesis in rainbow trout (Oncorhynchus mykiss)
Natural selection drives the evolution of traits to optimize organismal performance, but optimization of one aspect of performance can influence other aspects of performance. Here, we asked how phenotypic variation between locally adapted fish populations affects locomotion and ventilation, testing for functional trade‐offs and trait–performance correlations. Specifically, we investigated two populations of livebearing fish ( Poecilia mexicana ) that inhabit distinct habitat types (hydrogen‐sulphide‐rich springs and adjacent nonsulphidic streams). For each individual, we quantified different metrics of burst swimming during simulated predator attacks, steady swimming and gill ventilation. Coinciding with predictions, we documented significant population differences in all aspects of performance, with fish from sulphidic habitats exhibiting higher steady swimming performance and higher ventilation capacity, but slower burst swimming. There was a significant functional trade‐off between steady and burst swimming, but not between different aspects of locomotion and ventilation. Although our findings about population differences in locomotion performance largely parallel the results from previous studies, we provide novel insights about how morphological variation might impact ventilation and ultimately oxygen acquisition. Overall, our analyses provided insights into the functional consequences of previously documented phenotypic variation, which will help to disentangle the effects of different sources of selection that may coincide along complex environmental gradients.
Simultaneous exposure to nitrate and low pH reduces the blood oxygen-carrying capacity and functional performance of a freshwater fish
Human activities present aquatic species with numerous of environmental challenges, including excessive nutrient pollution (nitrate) and altered pH regimes (freshwater acidification). In isolation, elevated nitrate and acidic pH can lower the blood oxygen-carrying capacity of aquatic species and cause corresponding declines in key functional performance traits such as growth and locomotor capacity. These factors may pose considerable physiological challenges to organisms but little is known about their combined effects. To characterise the energetic and physiological consequences of simultaneous exposure to nitrate and low pH, we exposed spangled perch (Leiopotherapon unicolor) to a combination of nitrate (0, 50 or 100 mg L−1) and pH (pH 7.0 or 4.0) treatments in a factorial experimental design. Blood oxygen-carrying capacity (haemoglobin concentration, methaemoglobin concentrations and oxygen equilibrium curves), aerobic scope and functional performance traits (growth, swimming performance and post-exercise recovery) were assessed after 28 days of exposure. The oxygen-carrying capacity of fish exposed to elevated nitrate (50 and 100 mg L−1) was compromised due to reductions in haematocrit, functional haemoglobin levels and a 3-fold increase in methaemoglobin concentrations. Oxygen uptake was also impeded due to a right shift in oxygen–haemoglobin binding curves of fish exposed to nitrate and pH 4.0 simultaneously. A reduced blood oxygen-carrying capacity translated to a lowered aerobic scope, and the functional performance of fish (growth and swimming performance and increased post-exercise recovery times) was compromised by the combined effects of nitrate and low pH. These results highlight the impacts on aquatic organisms living in environments threatened by excessive nitrate and acidic pH conditions.
Swimming capability of zebrafish is governed by water temperature, caudal fin length and genetic background
Several zebrafish strains such as AB, Tübingen (TU), Wild India Kolkata (WIK) and Tupfel long fin (TL) have been established for genetic study. Each strain has its morphological and behavioral traits. Motor traits, however, have not been explored in zebrafish strains. We here applied a treadmill for fish (swimmill) and measured swimming capability of adult zebrafish by critical swimming speed, which is the maximum water velocity in which fish can keep swimming. First, we confirmed that swimming capability does not vary between female and male. Second, we found that the appropriate water temperature for swimming was between 16 and 30 °C. Third, our fin clip experiments using long-finned zebrafish revealed that they can exhibit high swimming capability when the caudal fin length was set between 3 and 10 mm, implying that long-finned zebrafish are unfavorable for fast swimming. Finally, we compared swimming capability of several zebrafish strains and demonstrated that WIK fish was significantly less capable of swimming despite that they have short caudal fin (~9 mm). The offspring of WIK fish were less capable of swimming, while hybrids of WIK and TU showed high swimming performance comparable to TU. Thus, lower swimming capability of WIK strain is inheritable as a motor trait.
Swimming Performance Evaluation of Four Freshwater Fish Species from the South Korea
Thermal stress can directly affect the survival of fishes and indirectly impact fish populations through several processes, including impaired swimming performance. Bigeye chub Hybopsis amblops is a state-endangered species in Illinois and is disappearing in the northern portion of its native range in North America. Limited temperature tolerance information exists on this species. The aim of this study was to define the impacts of 2 acclimation temperatures on the performance and behavior of bigeye chub. To accomplish this, we conducted 2 assays: critical thermal maximum (CTmax) testing for upper thermal tolerance limits, and swimming performance testing for critical swimming speed (Ucrit) and burst swimming ability. With a 5°C acclimation temperature increase from 21 to 26°C, the CTmax of bigeye chub increased from 32.8 ± 0.4°C to 36.4 ± 0.9°C. Ucrit was not different across acclimation temperatures, and fish from both acclimation groups could swim up to over 10 body lengths (BL) s−1. Burst swimming duration also did not differ statistically across groups, but bigeye chub from the 26°C group swam 27% longer in duration relative to fish from the 21°C group. Results from this study can help guide the protection and restoration of bigeye chub populations from thermal stressors.
Assessing Acoustic Tagging Effects on Survival, Growth, and Swimming Ability of Juvenile Lake Sturgeon
Acoustic telemetry is used to quantify fish movement, ecology, and habitat use and can contribute to assessing the success of species supplementation. In this field, a better understanding of the effects of tag burden (or the impact of an acoustic telemetry tag, which is related to the ratio of tag weight to body weight) is critical to ensure postrelease monitoring. Research on the effects of acoustic tag burden on imperiled fishes at different ontogenic stages, such as juvenile Lake Sturgeon Acipenser fulvescens, is limited. Our study provides key information for the selection of the largest acoustic tag with the greatest battery life possible (taking into account tag burden) to monitor the release success and movements of juvenile Lake Sturgeon stocked for reintroduction. We characterized tag burden effects by examining survival, TL, weight, Fulton's condition factor, and swim performance of individuals. We examined four groups of fish: control (anesthetized and no acoustic tag inserted; n = 24), sham control (anesthetized with incision sutured but no acoustic tag inserted; n = 24), Vemco V8 acoustic tag (2.0 g in air; n = 24), and Vemco V9 tag (4.4 g in air; n = 24). Acoustic tags were inserted into anesthetized fish, and the incision was sutured; tag burden (mean ± SE) ranged from 2.2 ± 0.06% to 4.6 ± 0.10% of total body weight. Results showed that the two tag burden treatments had no significant effects on growth or survival (compared to both control groups) across a 114-d study period and that critical swim speed at 12–20 d postsurgery was not significantly impacted by increasing tag burden. Because neither of the acoustic tag sizes had significant deleterious effects on the metrics studied, we recommend using a larger V9 tag (i.e., the most powerful tag with the longest battery life) for postrelease monitoring of reintroduced juvenile Lake Sturgeon.
Combined effects of ocean acidification and temperature on larval and juvenile growth, development and swimming performance of European sea bass (Dicentrarchus labrax)
Ocean acidification and ocean warming (OAW) are simultaneously occurring and could pose ecological challenges to marine life, particularly early life stages of fish that, although they are internal calcifiers, may have poorly developed acid-base regulation. This study assessed the effect of projected OAW on key fitness traits (growth, development and swimming ability) in European sea bass (Dicentrarchus labrax) larvae and juveniles. Starting at 2 days post-hatch (dph), larvae were exposed to one of three levels of PCO2 (650, 1150, 1700 μatm; pH 8.0, 7.8, 7.6) at either a cold (15°C) or warm (20°C) temperature. Growth rate, development stage and critical swimming speed (Ucrit) were repeatedly measured as sea bass grew from 0.6 to ~10.0 (cold) or ~14.0 (warm) cm body length. Exposure to different levels of PCO2 had no significant effect on growth, development or Ucrit of larvae and juveniles. At the warmer temperature, larvae displayed faster growth and deeper bodies. Notochord flexion occurred at 0.8 and 1.2 cm and metamorphosis was completed at an age of ~45 and ~60 days post-hatch for sea bass in the warm and cold treatments, respectively. Swimming performance increased rapidly with larval development but better swimmers were observed in the cold treatment, reflecting a potential trade-off between fast grow and swimming ability. A comparison of the results of this and other studies on marine fish indicates that the effects of OAW on the growth, development and swimming ability of early life stages are species-specific and that generalizing the impacts of climate-driven warming or ocean acidification is not warranted.
Effects of intracoelomic transmitter implantation on metabolic rate, swimming performance, growth and survival in juveniles of two salmonids
In this study, we investigated the effects of acoustic tag implantation on standard and routine metabolic rate (SMR and RMR, estimated via oxygen consumption), critical swimming speed (Ucrit ), survival and growth in juveniles of rainbow trout Oncorhynchus mykiss and lake trout Salvelinus namaycush. Tag burdens ranged from 1.8 to 7.5 % across the two species. Growth rates in acoustic-tagged fish were equal to or higher than those in other treatments. Acoustic-tagged S. namaycush had a marginally lower Ucrit than controls but that effect was not replicated in the O. mykiss experiment. Tagging did not have clear effects on SMR but there was an interaction whereby SMR and RMR tended to increase with time since surgery in tagged O. mykiss but not in other treatments (the same trend did not occur in S. namaycush). Survival was high across treatments (mean 98% survival among O. mykiss treatments, 97.5% among S. namaycush treatments). There were no statistically significant effects of relative tag burden (% of body mass) except for a weak negative relationship with growth rate (across species) and a weak positive relationship with Ucrit but only in the O. mykiss. Collectively, our findings suggest there were minor, context-dependent effects of acoustic tagging in juvenile S. namaycush and O. mykiss during an eight-week laboratory experiment. Further research will be required to assess whether tagging can cause meaningful behavioural effects in these species in captivity or in the wild and whether there is a tag burden threshold above which deleterious effects consistently occur. This article is protected by copyright. All rights reserved.
How toxic is a non-toxic nanomaterial: Behaviour as an indicator of effect in Danio rerio exposed to nanogold
Acoustic telemetry is used to quantify fish movement, ecology, and habitat use and can contribute to assessing the success of species supplementation. In this field, a better understanding of the effects of tag burden (or the impact of an acoustic telemetry tag, which is related to the ratio of tag weight to body weight) is critical to ensure postrelease monitoring. Research on the effects of acoustic tag burden on imperiled fishes at different ontogenic stages, such as juvenile Lake Sturgeon Acipenser fulvescens, is limited. Our study provides key information for the selection of the largest acoustic tag with the greatest battery life possible (taking into account tag burden) to monitor the release success and movements of juvenile Lake Sturgeon stocked for reintroduction. We characterized tag burden effects by examining survival, TL, weight, Fulton's condition factor, and swim performance of individuals. We examined four groups of fish: control (anesthetized and no acoustic tag inserted; n = 24), sham control (anesthetized with incision sutured but no acoustic tag inserted; n = 24), Vemco V8 acoustic tag (2.0 g in air; n = 24), and Vemco V9 tag (4.4 g in air; n = 24). Acoustic tags were inserted into anesthetized fish, and the incision was sutured; tag burden (mean ± SE) ranged from 2.2 ± 0.06% to 4.6 ± 0.10% of total body weight. Results showed that the two tag burden treatments had no significant effects on growth or survival (compared to both control groups) across a 114-d study period and that critical swim speed at 12–20 d postsurgery was not significantly impacted by increasing tag burden. Because neither of the acoustic tag sizes had significant deleterious effects on the metrics studied, we recommend using a larger V9 tag (i.e., the most powerful tag with the longest battery life) for postrelease monitoring of reintroduced juvenile Lake Sturgeon.
Hydraulics and swimming behavior of schizothorax prenanti in vertical slot fishways
This paper presents a novel experiment for the correlation between the hydraulics and the swimming behavior of Schizothorax prenanti, a rare species of fish in southwest China, in passing a vertical slot fishway. With an acoustic Doppler velocimeter, the velocities of a physical model in the equidimension fishway in the Shaping II power station are measured. The hydraulic parameters include the hydraulic head drop, the velocity patterns and the flow rate, and the swimming behavior includes the burst-coast, the sustained swimming and the migratory path, and they are analyzed under the test conditions. The sustained swimming velocity is in the range from 0.65m/s to 1.09m/s. The estimated hydraulic head drop of each pool is calculated and is in the range from 0.08-0.11 m, which means that 2.6% slope is reasonable. For the same slope, the maximum velocity is further reduced from 1.24 m/s to 1.14 m/s by using an L shape baffle structure. The above findings are used as the basis to evaluate the hydraulic performance of the fishways, where the L shape baffle structure is expected to be effective for creating a preferencial flow for the fish. For the main stream of the pool, an “Ω” shape flow pattern is more fish-friendly, which can effectively extend the energy dissipation distance and avoid the bursting through a high velocity zone. This paper provides a useful complementary tool for practical designs.
Finding the peak of dynamic oxygen uptake during fatiguing exercise in fish
As fish approach fatigue at high water velocities in a critical swimming speed (Ucrit) test, their swimming mode and oxygen cascade typically move to an unsteady state because they adopt an unsteady, burst-and-glide swimming mode despite a constant, imposed workload. However, conventional ṀO2 sampling intervals (5-20 min) tend to smooth any dynamic fluctuations in active ṀO2 (ṀO2active) and thus likely underestimate the peak ṀO2active. Here, we used rainbow trout (Oncorhynchus mykiss) to explore the dynamic nature of ṀO2active near Ucrit by using various sampling windows and an iterative algorithm. Compared with a conventional interval regression analysis of ṀO2active over a 10-min period, our new analytical approach generated a 23% higher peak ṀO2active. Therefore, we suggest that accounting for such dynamics in ṀO2active with this new analytical approach may lead to more accurate estimates of maximum ṀO2 in fishes.
Pck-ing up steam: Widening the salmonid gluconeogenic gene duplication trail
Sympatric speciation occurs without geographical barriers and is thought to often be driven by ecological specialization of individuals that eventually diverge genetically and phenotypically. Distinct morphologies between sympatric populations occupying different niches have been interpreted as such differentiating adaptive phenotypes, yet differences in performance and thus likely adaptiveness between them were rarely tested. Here, we investigated if divergent body shapes of two sympatric crater lake cichlid species from Nicaragua, one being a shore‐associated (benthic) species while the other prefers the open water zones (limnetic), affect cruising (U crit ) and sprinting (U sprint ) swimming abilities – performances particularly relevant to their respective lifestyles. Furthermore, we investigated species differences in oxygen consumption (MO 2 ) across different swimming speeds and compare gene expression in gills and white muscle at rest and during exercise. We found a superior cruising ability in the limnetic Amphilophus zaliosus compared to the benthic Amphilophus astorquii, while sprinting was not different, suggesting that their distinct morphologies affect swimming performance. Increased cruising swimming ability in A. zaliosus was linked to a higher oxygen demand during activity (but not rest), indicating different metabolic rates during exercise ‐ a hypothesis supported by coinciding gene expression patterns of gill transcriptomes. We identified differentially expressed genes linked to swimming physiology, regulation of swimming behaviour and oxygen intake. A combination of physiological and morphological differences may thus underlie adaptations to these species' distinct niches. This complex ecological specialization probably resulted in morphological and physiological trade‐offs that contributed to the rapid establishment and maintenance of divergence with gene flow. see also the Perspective by Gaither et al
Differences in swimming performance and energetic costs between an endangered native toothcarp (Aphanius iberus) and an invasive mosquitofish (Gambusia holbrooki)
Swimming performance is a key feature that mediates fitness and survival in many fish species. Using a swim tunnel respirometer, we compared prolonged swimming performance and energy use for two competing species: an endangered, endemic toothcarp ( Aphanius iberus ) and a worldwide invasive mosquitofish ( Gambusia holbrooki ). Critical ( U crit ) and optimal swimming speeds, standard and maximal metabolic rates, absolute aerobic scope, as well as the minimum cost of transport were estimated and compared between species and sexes. Body streamlining and caudal peduncle depth were also measured to explain the differences in swimming performance and efficiency. Both sexes of A. iberus presented similar swimming capacity and metabolic traits, whereas males of G. holbrooki showed higher critical swimming speeds, maximal metabolic rate and absolute aerobic scope than females. We also found marked differences between species in most of the response variables examined. Aphanius iberus showed lower swimming capacity ( U crit mean <10 cm s −1 ), higher maximal metabolic rate and absolute aerobic scope than the invasive species. By contrast, G holbrooki swam faster and had lower cost of transport at a given fish mass and speed, thereby leading to a higher swimming efficiency. The observed differences in swimming efficiency were closely related to differences in morphological characteristics and therefore to drag pressures and propulsion. Our results add a mechanistic basis to the ecological understanding of these two species and suggest that although both are poor swimmers compared to many other similarly sized species, the native species likely has more restricted water flow tolerance and dispersal capacities.
Treatment with Nitrate, but Not Nitrite, Lowers the Oxygen Cost of Exercise and Decreases Glycolytic Intermediates While Increasing Fatty Acid Metabolites in Exercised Zebrafish
Axton, Elizabeth R; Beaver, Laura M; St Mary, Lindsey; Truong, Lisa; Logan, Christiana R; Spagnoli, Sean; Prater, Mary C; Keller, Rosa M; Garcia-Jaramillo, Manuel; Ehrlicher, Sarah E; (2019)
Background Dietary nitrate improves exercise performance by reducing the oxygen cost of exercise, although the mechanisms responsible are not fully understood. Objectives We tested the hypothesis that nitrate and nitrite treatment would lower the oxygen cost of exercise by improving mitochondrial function and stimulating changes in the availability of metabolic fuels for energy production. Methods We treated 9-mo-old zebrafish with nitrate (sodium nitrate, 606.9 mg/L), nitrite (sodium nitrite, 19.5 mg/L), or control (no treatment) water for 21 d. We measured oxygen consumption during a 2-h, strenuous exercise test; assessed the respiration of skeletal muscle mitochondria; and performed untargeted metabolomics on treated fish, with and without exercise. Results Nitrate and nitrite treatment increased blood nitrate and nitrite levels. Nitrate treatment significantly lowered the oxygen cost of exercise, as compared with pretreatment values. In contrast, nitrite treatment significantly increased oxygen consumption with exercise. Nitrate and nitrite treatments did not change mitochondrial function measured ex vivo, but significantly increased the abundances of ATP, ADP, lactate, glycolytic intermediates (e.g., fructose 1,6-bisphosphate), tricarboxylic acid (TCA) cycle intermediates (e.g., succinate), and ketone bodies (e.g., β-hydroxybutyrate) by 1.8- to 3.8-fold, relative to controls. Exercise significantly depleted glycolytic and TCA intermediates in nitrate- and nitrite-treated fish, as compared with their rested counterparts, while exercise did not change, or increased, these metabolites in control fish. There was a significant net depletion of fatty acids, acyl carnitines, and ketone bodies in exercised, nitrite-treated fish (2- to 4-fold), while exercise increased net fatty acids and acyl carnitines in nitrate-treated fish (1.5- to 12-fold), relative to their treated and rested counterparts. Conclusions Nitrate and nitrite treatment increased the availability of metabolic fuels (ATP, glycolytic and TCA intermediates, lactate, and ketone bodies) in rested zebrafish. Nitrate treatment may improve exercise performance, in part, by stimulating the preferential use of fuels that require less oxygen for energy production. Keywords: ATP, fatty acids, ketone bodies, lactate, mitochondria, metabolomics, nitrate, nitrite, nitric oxide
Impact of ice‐angling and handling on swimming performance in bluegill and largemouth bass
Many recreational anglers practice catch-and-release; however, research indicates that capture and handling has the potential to adversely affect fish. Numerous catch-and-release studies have been conducted during warmer months, but little work has been done during the winter when ice-anglers in temperate regions target fish. We conducted an ice angling simulation that quantified the impacts of air temperature and air exposure duration on swimming performance and gill physiology of Bluegill Lepomis macrochirus and Largemouth Bass Micropterus salmoides. In all experiments, fish were first subjected to a simulated angling bout in water at 5°C, followed by 30 s or 5 min of air exposure at above freezing (3–8°C) or subfreezing (−7°C) temperatures. The fish were then assessed for critical swimming speed (Bluegill), oxygen consumption (Bluegill), burst swimming (Largemouth Bass), or gill damage (Largemouth Bass). Results showed that Bluegill subjected to 5 min of air exposure at −7°C suffered impaired swimming, with a 47% loss in critical swimming speed (Ucrit) compared with the controls. Treatment had no impact on burst swimming or gill damage in Largemouth Bass. The results demonstrate the possible impacts of air exposure on fish, and we recommend that ice-anglers make an effort to minimize air exposure duration, especially when air temperatures are low.
Protective Effect of Dietary Taurine from ROS Production in European Seabass under Conditions of Forced Swimming
Taurine (Tau) is an amino sulfonic acid, which is widely distributed in animal tissues, whereas it is almost lacking in plants with the exception of certain algae, seaweeds, and few others. In the aquafeed industry, Tau is mainly used as a feed additive to promote growth in marine fish species with limited cysteine sulfinate decarboxylase activity. In particular, Tau supplementation is required in feeds in which fishmeal (FM) is substituted with high percentages of plant-derived protein sources such as soybean meals (SBM) that have much lower levels of Tau than FM. In addition to being a growth promoter, Tau exert powerful antioxidant properties being a scavenger of the reactive oxygen species (ROS). Under sustained swimming conditions, an intracellular increase in ROS production can occur in fish red muscle where the abundance of mitochondria (the main site of ROS formation) is high. Accordingly, this study aimed at investigating the effects of dietary Tau on European seabass (Dicentrarchus labrax) growth and oxidative stress response induced by swimming exercise. Individually tagged fish of 92.57 ± 20.33 g mean initial weight were fed two experimental diets containing the same low percentage of FM and high percentage of SBM. One diet was supplemented with 1.5% of Tau. Tau supplemented in the diet had a positive effect on fish growth, and enhanced swimming performance and antioxidant status. Two swim endurance tests were performed during the feeding trial. Metabolic oxygen consumption (MO2) was measured during exercise at incremental swimming speeds (0.7, 1.4, 2.1, 2.8, 3.5, and then 4.2 BL (body length) s−1, until fatigue). Fish maximal sustainable swimming speed (Ucrit) was determined too. To investigate the antioxidant effect of dietary Tau, we also measured ROS production in fish blood by RBA (respiratory burst activity) assay and quantified the expression of genes coding for antioxidant enzymes by qPCR (quantitative polymerase chain reaction), such as SOD (superoxide dismutase), GPX (glutathione peroxidase), and CAT (catalase) in red muscle and liver. There was a significant effect of Tau upon Ucrit during exercise. Additionally, ROS production was significantly lower in fish fed with Tau supplemented diet, supporting the role of Tau as ROS scavenger. The protective effect of Tau against oxidative stress induced by forced swimming was denoted also by a significant decrease in antioxidant enzymes gene expression in fish liver and muscle. Taken together these results demonstrate that Tau is beneficial in low FM-based diets for seabass.
Treading water: respirometer choice may hamper comparative studies of energetics in fishes
In this study, swim-tunnel respirometry was performed on Atlantic salmon Salmo salar post-smolts in a 90 l respirometer on individuals and compared with groups or individuals of similar sizes tested in a 1905 l respirometer, to determine if differences between set-ups and protocols exist. Standard metabolic rate (SMR) derived from the lowest oxygen uptake rate cycles over a 20 h period was statistically similar to SMR derived from back extrapolating to zero swim speed. However, maximum metabolic rate (MMR) estimates varied significantly between swimming at maximum speed, following an exhaustive chase protocol and during confinement stress. Most notably, the mean (± SE) MMR was 511 ± 15 mg O2 kg-1 h-1 in the swim test which was 52% higher compared with 337 ± 9 mg O2 kg-1 in the chase protocol, showing that the latter approach causes a substantial underestimation. Performing group respirometry in the larger swim tunnel provided statistically similar estimates of SMR and MMR as for individual fish tested in the smaller tunnel. While we hypothesised a larger swim section and swimming in groups would improve swimming performance, Ucrit was statistically similar between both set-ups and statistically similar between swimming alone v. swimming in groups in the larger set-up, suggesting that this species does not benefit hydrodynamically from swimming in a school in these conditions. Different methods and set-ups have their own respective limitations and advantages depending on the questions being addressed, the time available, the number of replicates required and if supplementary samplings such as blood or gill tissues are needed. Hence, method choice should be carefully considered when planning experiments and when comparing previous studies. This article is protected by copyright. All rights reserved.
Diel cycling hypoxia enhances hypoxia tolerance in rainbow trout (Oncorhynchus mykiss): evidence of physiological and metabolic plasticity
Many fish naturally encounter a daily cycle of hypoxia but it is unclear whether this exposure hardens hypoxia-intolerant fish to future hypoxia or leads to accumulated stress and death. Rainbow trout (Oncorhynchus mykiss) is a putatively hypoxia-sensitive species found in rivers and estuaries that may routinely experience hypoxic events. Trout were exposed to 1 of 4 135h treatments in a swim-tunnel respirometer: 1) air-saturated control (20.7 kPa PO2); 2) diel cycling O2 (20.7-4.2 kPa over 24h); 3) acute hypoxia (130h at 20.7 kPa PO2 followed by 5h at 4.2 kPa PO2); 4) the mean oxygen tension (12.4 kPa PO2) experienced by the diel cycled fish. Some responses were similar in diel O2 cycled and mean PO2-treated fish but overall exposure to ecologically-representative diel hypoxia cycles improved hypoxia tolerance. Diel hypoxia-induced protective responses included increased inducible HSP70 concentration and mean corpuscular hemoglobin concentration, as well as reduced plasma cortisol. Acclimation to diel hypoxia allowed metabolic rates to decline during hypoxia, reduced oxygen debt following subsequent exposures, and allowed fish to return to an anabolic phenotype. The data demonstrate that acute diel cycling hypoxia improves hypoxia tolerance in previously intolerant fish through the activation of cellular protective mechanisms and a reduction in metabolic O2 requirements.
Cost of transport is a repeatable trait but is not determined by mitochondrial efficiency in zebrafish (Danio rerio)
The energy used to move a given distance (cost of transport; CoT) varies significantly between individuals of the same species. A lower CoT allows animals to allocate more of their energy budget to growth and reproduction. A higher CoT may cause animals to adjust their movement across different environmental gradients to reduce energy allocated to movement. The aim of this project was to determine whether CoT is a repeatable trait within individuals, and to determine its physiological causes and ecological consequences. We found that the CoT is a repeatable trait in zebrafish (Danio rerio). We rejected the hypothesis that mitochondrial efficiency (P/O ratios) predicted CoT. We also rejected the hypothesis that CoT is modulated by temperature acclimation, exercise training, or their interaction, although CoT increased with increasing acute test temperature. There was a weak but significant negative correlation between CoT and dispersal, measured as the number of exploration decisions made by fish, and the distance travelled against the current in an artificial stream. However, CoT did not correlate with the voluntary speed of fish moving against the current. The implications of these results are that CoT reflects a fixed physiological phenotype of an individual, which is not plastic in response to persistent environmental changes. Consequently, individuals may have fundamentally different energy budgets as they move across environments, and may adjust movement patterns as a result of allocation trade-offs. It was surprising that mitochondrial efficiency did not explain differences in CoT, and our working hypothesis is that the energetics of muscle contraction and relaxation may determine CoT. The increased in CoT with increasing acute environmental temperature means that warming environments will increase the proportion of the energy budget allocated to locomotion unless individuals adjust their movement patterns.
Ocean warming combined with lower omega-3 nutritional availability impairs the cardio-respiratory function of a marine fish
Highly unsaturated fatty acids of the omega-3 series (HUFA) are major constituents of cell membranes, yet poorly synthesised de novo by consumers. Their production, mainly supported by aquatic microalgae, has been decreasing with global change. Understanding the consequences of such reductions is essential for ectotherm consumers, since temperature tightly regulates the HUFA content in cell membranes, maintaining their functionality. Integrating individual, tissue and molecular approaches, we examined the consequences of the combined effects of temperature and HUFA depletion on the key cardio-respiratory functions of the golden grey mullet, an ectotherm grazer of high ecological importance. For four months, fish were exposed to two contrasting HUFA diets (4.8% ecosapentaenoic acid (EPA)+docosahexaenoic acid (DHA) on dry matter (DM) vs. 0.2% EPA+DHA on DM) at 12°C and 20°C. Ventricular force development coupled with gene expression profiles measured on cardiac muscle suggest that combining HUFA depletion with warmer temperatures leads to (1) a proliferation of sarcolemmal and SR Ca2+ channels and (2) a higher force-generating ability by increasing extracellular Ca2+ influx via sarcolemmal channels when the heart has to sustain excessive effort due to stress and/or exercise. At the individual scale, these responses were associated with a relatively greater aerobic scope, maximum metabolic rate and net cost of locomotion, suggesting the higher energy cost of this strategy. These impaired cardiac performances could have wider consequences on other physiological performances such as growth, reproduction or migration, all greatly depending on heart function.
Effects of acute temperature changes on the swimming abilities and oxygen consumption of Ptychobarbus kaznakovi from the Lancang River
Water temperature is known to be a particularly important environmental factor that affects fish swimming performance, but it is unknow how acute temperature changes affect the fish performance of Ptychobarbus kaznakovi. P. kaznakovi in the Lancang River have declined quickly in recent years, and this species was used to examine the effects of acute temperature changes on swimming abilities and oxygen consumption in a Brett‐type swimming tunnel respirometer. The standard metabolic rate (SMR) and routine metabolic rate (RMR) showed 216% and 134% increases, respectively, at 22°C (an acute increase from 17 to 22°C) compared to those at 12°C (an acute decrease from 17 to 12°C). Moreover, the RMR was approximately 1.7, 1.6 and 1.3 times the value of the SMR at 12°C, 17°C and 22°C, respectively. The critical swimming speed (Ucᵣᵢₜ) of P. kaznakovi at 22°C was 5.45 ± 0.45BL/S, which was 45% higher than that at 12°C (3.77 ± 0.92BL/S). The oxygen consumption rates (MO₂) reached their maximum values at swimming speeds near the Ucᵣᵢₜ for all the temperature treatments. The maximum metabolic rate (MMR) values at 12°C, 17°C and 22°C were 274.53 ± 142.60 (mgO₂ kg⁻¹ hr⁻¹), 412.85 ± 216.34 (mgO₂ kg⁻¹ hr⁻¹) and 1,095.73 ± 52.50 (mgO₂ kg⁻¹ hr⁻¹), respectively. Moreover, there was a narrow aerobic scope at 12°C compared to that at 17°C and 22°C. The effect of acute temperature changes on the swimming abilities and oxygen consumption of P. kaznakovi indicated that water temperature changes caused by dam construction could directly affect energy consumption during the upstream migration of fish.
Temperature dependent pre-and postprandial activity in Pacific bluefin tuna (Thunnus orientalis)
Gleiss, Adrian C; Dale, Jonathan J; Klinger, Dane H; Estess, Ethan E; Gardner, Luke D; Machado, Benjamin; Norton, Alexander G; Farwell, Charles; Block, Barbara A; (2019)
Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology
The effects of salinity and photoperiod on aerobic scope, hypoxia tolerance and swimming performance of coho salmon (Oncorhynchus kisutch) reared in recirculating aquaculture systems
Field metabolic rate (FMR) is key to understanding individual and population-level responses to environmental changes, but is challenging to measure in field conditions, particularly in aquatic environments. Here we show that FMR can be estimated directly from the isotopic composition of carbon in fish otoliths (δ13Coto). We describe the relationship between δ13Coto values and oxygen consumption rate, and report results from laboratory experiments relating individual-level measurements of oxygen consumption rates to δ13Coto values in Atlantic cod (Gadus morhua). We apply our new δ13Coto metabolic proxy to existing δ13Coto data from wild cod and four deepwater fish species to test the validity of inferred FMR estimates. The δ13Coto metabolic proxy offers a new approach to study physiological ecology in free-ranging wild fishes. Otolith-based proxies for FMR are particularly promising as they allow retrospective assessment of time-integrated, individual-level FMR throughout an individual fish’s life history. Ming-Tsung Chung et al. report a method for estimating field metabolic rate (FMR) in teleost fishes using the isotopic composition of carbon found in inner ear structures called otoliths. They show that their method can provide accurate estimates of FMR for free-ranging wild fishes and allows for tracking FMR of individual fish over time.
Physiological performance of ballan wrasse (Labrus bergylta) at different temperatures and its implication for cleaner fish usage in salmon aquaculture
The physiological reasons why salmonids show glucose intolerance are unclear. In mammals, rapid clearance of a glucose load is mainly achieved through insulin-mediated inhibition of hepatic glucose production ( R a ) and stimulation of glucose disposal ( R d ), but the effects of insulin on R a and R d glucose have never been measured in fish. The goal of this study was to characterize the impact of insulin on the glucose kinetics of rainbow trout in vivo. Glucose fluxes were measured by continuous infusion of [6- 3 H]glucose before and during 4 h of insulin administration. The phosphorylated form of the key signaling proteins Akt and S6 in the insulin cascade were also examined, confirming activation of this pathway in muscle but not liver. Results show that insulin inhibits trout R d glucose from 8.6 ± 0.6 to 5.4 ± 0.5 µmol kg −1 min −1: the opposite effect than classically seen in mammals. Such a different response may be explained by the contrasting effects of insulin on gluco/hexokinases of trout versus mammals. Insulin also reduced trout R a from 8.5 ± 0.7 to 4.8 ± 0.6 µmol·kg −1 ·min −1, whereas it can almost completely suppresses R a in mammals. The partial inhibition of R a glucose may be because insulin only affects gluconeogenesis but not glycogen breakdown in trout. The small mismatch between the responses to insulin for R d (−37%) and R a glucose (−43%) gives trout a very limited capacity to decrease glycemia. We conclude that the glucose intolerance of rainbow trout can be explained by the inhibiting effect of insulin on glucose disposal.
Further characterization of the zebrafish model of acrylamide acute neurotoxicity: gait abnormalities and oxidative stress
Occupational, accidental, or suicidal exposure to acrylamide (ACR) may result in a neurotoxic syndrome. Development of animal models of acrylamide neurotoxicity is necessary for increasing our mechanistic understanding of this syndrome and developing more effective therapies. A new model for acute ACR neurotoxicity has been recently developed in adult zebrafish. Whereas the results of the initial characterization were really promising, a further characterization is needed for testing the construct validity of the model. In this study, the presence of gait abnormalities has been investigated by using ZebraGait, software specifically designed to analyze the kinematics of fish swimming in a water tunnel. The results of the kinematic analyses demonstrated that the model exhibits mild-to-moderate gait abnormalities. Moreover, the model exhibited negative scototaxis, a result confirming a phenotype of anxiety comorbid with depression phenotype. Interestingly, depletion of the reduced glutathione levels was found in the brain without a concomitant increase in oxidative stress. Finally, hypolocomotion and positive geotaxis exhibited by this model were fully recovered 5 days after transferring the fish to clean fish-water. All this data support the validity of the ACR acute neurotoxicity model developed in adult zebrafish.
Effects of Total Dissolved Gas Supersaturation on the Swimming Performance of Two Endemic Fish Species in the Upper Yangtze River
Total dissolved gas (TDG) supersaturation has been identified as one of the possible negative environmental effects of the construction of dams in the upper Yangtze River. Juvenile Chinese sucker and Prenant’s schizothoracin fish were selected to evaluate the impact of TDG supersaturation on the swimming performance of fish in the Upper Yangtze River. The critical swimming speeds (Ucrit) of Chinese sucker were 4.06, 2.83, 2.87, 2.68, and 2.29 BLs−1 at the TDG supersaturation levels of 100, 117, 122, 125 and 130%, respectively. The Ucrit of Prenant’s schizothoracin were 7.38, 4.32, 3.98, and 3.74 BLs−1 at the TDG supersaturation levels of 100, 117, 125 and 130%, respectively. The burst swimming speed (Uburst) of the two species also significantly declined with increases in the TDG supersaturation level. The present results demonstrate that the swimming speeds of Prenant’s schizothoracin that were exposed to 130% TDG supersaturation for 2 h exhibited significant recovery after 2 days, whereas the swimming speeds of Chinese sucker did not. The swimming speeds of Chinese sucker after 2 days of recovery were significantly reduced compared with those of control fish, whereas the speeds of Prenant’s schizothoracin returned to normal levels.
Spinal cholinergic interneurons differentially control motoneuron excitability and alter the locomotor network operational range
While cholinergic neuromodulation is important for locomotor circuit operation, the specific neuronal mechanisms that acetylcholine employs to regulate and fine-tune the speed of locomotion are largely unknown. Here, we show that cholinergic interneurons are present in the zebrafish spinal cord and differentially control the excitability of distinct classes of motoneurons (slow, intermediate and fast) in a muscarinic dependent manner. Moreover, we reveal that m2-type muscarinic acetylcholine receptors (mAChRs) are present in fast and intermediate motoneurons, but not in the slow motoneurons, and that their activation decreases neuronal firing. We also reveal a strong correlation between the muscarinic receptor configuration on motoneurons and the ability of the animals to locomote at different speeds, which might serve as a plasticity mechanism to alter the operational range of the locomotor networks. These unexpected findings provide new insights into the functional flexibility of motoneurons and how they execute locomotion at different speeds.
Adult spinal motoneurons change their neurotransmitter phenotype to control locomotion
Significance An intriguing feature of the nervous system is its plasticity—the remarkable lifelong capacity to change and adapt in light of intrinsic and extrinsic stimuli. Among the many different adaptive mechanisms that occur within the nervous system, changes in neurotransmission form an important plasticity-bestowing mechanism in the reconfiguration of neuronal circuits. Here, we reveal that physical activity and spinal cord injury can switch the neurotransmitter phenotype of the fast axial motoneurons to coexpress glutamate. Furthermore, our study shows that the adult vertebrate spinal motoneurons corelease glutamate alongside ACh in neuromuscular junctions to regulate motor behaviors. Thus, our findings suggest that fast motoneuron glutamatergic respecification enables a motor function-enhancing mechanism in vertebrates. A particularly essential determinant of a neuron’s functionality is its neurotransmitter phenotype. While the prevailing view is that neurotransmitter phenotypes are fixed and determined early during development, a growing body of evidence suggests that neurons retain the ability to switch between different neurotransmitters. However, such changes are considered unlikely in motoneurons due to their crucial functional role in animals’ behavior. Here we describe the expression and dynamics of glutamatergic neurotransmission in the adult zebrafish spinal motoneuron circuit assembly. We demonstrate that part of the fast motoneurons retain the ability to switch their neurotransmitter phenotype under physiological (exercise/training) and pathophysiological (spinal cord injury) conditions to corelease glutamate in the neuromuscular junctions to enhance animals’ motor output. Our findings suggest that motoneuron neurotransmitter switching is an important plasticity-bestowing mechanism in the reconfiguration of spinal circuits that control movements.
Reduced Swimming Performance Repeatedly Evolves on Loss of Migration in Landlocked Populations of Alewife
Whole-organism performance tasks are accomplished by the integration of morphological traits and physiological functions. Understanding how evolutionary change in morphology and physiology influences whole-organism performance will yield insight into the factors that shape its own evolution. We demonstrate that nonmigratory populations of alewife (Alosa pseudoharengus) have evolved reduced swimming performance in parallel, compared with their migratory ancestor. In contrast to theoretically and empirically based predictions, poor swimming among nonmigratory populations is unrelated to the evolution of osmoregulation and occurs despite the fact that nonmigratory alewives have a more fusiform (torpedo-like) body shape than their ancestor. Our results suggest that elimination of long-distance migration from the life cycle has shaped performance more than changes in body shape and physiological regulatory capacity.
Ontogenetic changes in swimming speed of silver carp, bighead carp, and grass carp larvae: implications for larval dispersal
Bighead, silver, and grass carps are invasive in the waterways of central North America, and grass carp reproduction in tributaries of the Great Lakes has now been documented. Questions about recruitment potential motivate a need for accurate models of egg and larval dispersal. Quantitative data on swimming behaviors and capabilities during early ontogeny are needed to improve these dispersal models. We measured ontogenetic changes in routine and maximum swimming speeds of bighead, grass, and silver carp larvae. Daily measurements of routine swimming speed were taken for two weeks post-hatch using a still camera and the LARVEL program, a custom image-analysis software. Larval swimming speed was calculated using larval locations in subsequent image frames and time between images. Using an endurance chamber, we determined the maximum swimming speed of larvae (post-gas bladder inflation) for four to eight weeks post-hatch. For all species, larval swimming speeds showed similar trends with respect to ontogeny: increases in maximum speed, and decreases in routine speed. Maximum speeds of bighead and grass carp larvae were similar and generally faster than silver carp larvae. Routine swimming speeds of all larvae were highest before gas bladder inflation, most likely because gas bladder inflation allowed the fish to maintain position without swimming. Downward vertical velocities of pre-gas bladder inflation fish were faster than upward velocities. Among the three species, grass carp larvae had the highest swimming speeds in the pre-gas bladder inflation period, and the lowest speeds in the post-gas bladder inflation period. Knowledge of swimming capability of these species, along with hydraulic characteristics of a river, enables further refinement of models of embryonic and larval drift.
Plastic responses to diel thermal variation in juvenile green sturgeon, Acipenser medirostris
Human-induced thermal variability can disrupt energy balance and performance in ectotherms; however, phenotypic plasticity may play a pivotal protective role. Ectotherm performance can be maintained in thermally heterogeneous habitats by reducing the thermal sensitivity of physiological processes and concomitant performance. We examined the capacity of juvenile green sturgeon (Acipenser medirostris) to respond to daily thermal variation. Juveniles (47 days post-hatch) were exposed to either stable (15 ± 0.5 °C) or variable (narrowly variable: 13-17 °C day -1 or widely variable 11-21 °C day -1 ) thermoperiod treatments, with equivalent mean temperatures (15 ± 0.5 °C), for 21 days. Growth (relative growth rate, % body mass gain), upper thermal tolerance (critical thermal maxima, CTMax) and the thermal sensitivity of swimming performance (critical swimming speed, U crit ) were assessed in fish from all treatments. Accelerated growth was observed in fish maintained under widely variable temperatures compared to narrowly variable and stable temperatures. No significant variation in CTMax was observed among thermoperiod treatments, suggesting all treatment groups acclimated to the mean temperature rather than daily maximums. The widely variable treatment induced a plastic response in swimming performance, where U crit was insensitive to temperature and performance was maintained across a widened thermal breadth. Maximum U crit attained was similar among thermoperiod treatments, but performance was maximised at different test temperatures (stable: 4.62 ± 0.44 BL s -1 at 15 °C; narrowly variable: 4.52 ± 0.23 BL s -1 at 21 °C; widely variable: 3.90 ± 0.24 BL s -1 at 11 °C, mean ± s.e.m.). In combination, these findings suggest juvenile A. medirostris are resilient to daily fluctuations in temperature, within the temperature range tested here.
Restoration of cardiac function after anaemia-induced heart failure in zebrafish
This study compared the critical swimming speed ( U crit ) and endurance performance of three Australian freshwater fish species in different swim‐test apparatus. Estimates of U crit measured in a large recirculating flume were greater for all species compared with estimates from a smaller model of the same recirculating flume. Large differences were also observed for estimates of endurance swimming performance between these recirculating flumes and a free‐surface swim tunnel. Differences in estimates of performance may be attributable to variation in flow conditions within different types of swim chambers. Variation in estimates of swimming performance between different types of flumes complicates the application of laboratory‐based measures to the design of fish passage infrastructure.
Consequences of electroshock‐induced narcosis in fish muscle: from mitochondria to swim performance
Adult zebrafish Danio rerio were exposed to an electric shock of 3 V and 1A for 5 s delivered by field backpack electrofishing gear, to induce a taxis followed by a narcosis. The effect of such electric shock was investigated on both the individual performances (swimming capacities and costs of transport) and at cellular and mitochondrial levels (oxygen consumption and oxidative balance). The observed survival rate was very high (96·8%) independent of swimming speed (up to 10 body length s −1 ). The results showed no effect of the treatment on the metabolism and cost of transport of the fish. Nor did the electroshock trigger any changes on muscular oxidative balance and bioenergetics even if red muscle fibres were more oxidative than white muscle. Phosphorylating respiration rates rose between (mean 1 s.e. ) 11·16 ± 1·36 pmol O 2 s −1 mg −1 and 15·63 ± 1·60 pmol O 2 s −1 mg −1 for red muscle fibres whereas phosphorylating respiration rates only reached 8·73 ± 1·27 pmol O 2 s −1 mg −1 in white muscle. Such an absence of detectable physiological consequences after electro‐induced narcosis both at organismal and cellular scales indicate that this capture method has no apparent negative post‐shock performance under the conditions of this study.
Red muscle function and thermal acclimation to cold in rainbow smelt, Osmerus mordax, and rainbow trout, Oncorhynchus mykiss
Climate change affects the thermal environment of aquatic organisms. Changes in the thermal environment may affect muscle function in the eurythermal rainbow smelt, Osmerus mordax, and relatively more stenothermal rainbow trout, Oncorhynchus mykiss. Literature suggests that the trout will be more sensitive to changes in environmental temperature, as they experience a more limited range of environmental temperatures. To examine the effects of thermal environment on red muscle function, both the smelt and trout were thermally acclimated to either a warm (12–15°C) or cold (4–5°C) temperature, after which studies of swimming performance and muscle mechanics were performed. The data on swimming performance and maximum muscle shortening velocity in rainbow smelt were previously published. In both species, cold‐acclimated (CA) fish swam with a significantly faster maximum aerobic swimming speed than warm‐acclimated fish, when tested at a common temperature of 10°C. Similarly, CA smelt and trout had faster red muscle contraction kinetics. However, smelt displayed a greater shift in contractile properties, such as having a significant shift in maximum muscle shortening velocity that was not observed in trout. The smelt red muscle outperformed trout, with twitch and tetanic times of relaxation being significantly faster for CA smelt compared with CA trout, especially when contraction kinetics were tested at 2°C. The smelt shows a greater thermal acclimation response compared with trout, with more robust increases in maximum swimming speed and faster muscle contractile properties. These differences in acclimation response may contribute to understanding how smelt and trout cope with climate change.
Linking muscle metabolism and functional variation to field swimming performance in bluegill sunfish (Lepomis macrochirus)
Skeletal muscle has diverse mechanical roles during locomotion. In swimming fish, power-producing muscles work in concert with the accessory muscles of the fins which augment and control power transfer to the water. Although fin muscles represent a significant proportion of the locomotor muscle mass, their physiological properties are poorly characterized. To examine the relationship between muscle metabolism and the differing mechanical demands placed on distinct muscle groups, we quantified the aerobic and glycolytic capacities of the myotomal, pectoral and caudal muscles of bluegill sunfish. These were indicated by the activities of citrate synthase and lactate dehydrogenase, rate-limiting enzymes for aerobic respiration and glycolysis, respectively. The well-established roles of slow and fast myotomal muscle types in sustained and transient propulsive movements allows their use as benchmarks to which other muscles can be compared to assess their function. Slow myotomal muscle had the highest CS activity, consistent with meeting the high metabolic and mechanical power demands of body-caudal fin (BCF) swimming at the upper end of the aerobically supported speed range. The largest pectoral adductors and abductors had CS activities lower than the slow myotomal muscle, in line with their role supplying thrust for low-speed, low-power swimming. The metabolic capacities of the caudal muscles were surprisingly low and inconsistent with their activity during steady-state BCF swimming at high speeds. This may reflect adaptation to the observed swimming behavior in the field, which typically involved short bouts of BCF-propulsive cycles rather than sustained propulsive activity.
Do slower movers have lower reproductive success and higher mutation load?
Deleterious mutations occur frequently in eukaryotes, resulting in individuals carrying multiple alleles that decrease their fitness. At a population level, if unchecked, accumulation of this mutation load can ultimately lead to extinction. How selection counters the accumulation of mutation load, limiting declines in population fitness, is not well understood. Here, we use manipulative experiments in zebrafish (Danio rerio) to investigate the opportunities for selection on mutation load. Inducing high mutation load through mutagenesis, we applied one generation of within-family selection on locomotor performance and characterized both the direct response to this selection and the indirect response of reproductive success. Offspring of slow swimming parents exhibited age-dependent declines in swimming speed, whereas their cousins, with faster swimming parents, did not. This pattern mimics previously documented differences between high and low mutation load populations of zebrafish, suggesting that slow swimming siblings inherited (and transmitted) more mutations than their faster swimming siblings. Crosses among offspring of slow swimming fish had, on average, <75% of the reproductive success of crosses among offspring of fast swimming parents, or crosses of offspring of slow swimmers with offspring of fast swimmers. This evidence of mutationally correlated swimming speed and reproductive success reveals the potential for concordant selection on mutation load through different fitness components. There was no evidence that crosses within families (where parents potentially shared the same mutations inherited from their common ancestor) had lower reproductive success than crosses among families, suggesting that viability selection was not acting predominantly through lethal recessive homozygotes. Rather, patterns of reproductive success are suggestive of effects of mutation number per se on embryo viability. Overall, our results highlight the potential for early life mortality to remove deleterious mutations, and the need to account for this mortality when investigating the evolutionary dynamics of mutation load.
Behavioral effects of copper on larval White Sturgeon
Early–life stage white sturgeon are sensitive to copper (Cu), with adverse behavioral responses observed during previous studies. The objectives of the present study were to quantify the effects of Cu exposure on white sturgeon swimming and feeding behaviors and determine their time to response. Larval sturgeon (1–2, 28, or 35 d posthatch [dph]) were exposed to Cu (0.5–8 μg/L) for 4 to 14 d. Abnormal behavioral changes were observed within the first few days of exposure including loss of equilibrium and immobilization. Digital video tracking software revealed decreased swimming activity with increasing Cu concentration. Significant changes in behavior and mortality occurred at concentrations of Cu between 1 and 8 μg/L. Juvenile white sturgeon, 58 dph, exposed to 12 μg/L Cu consumed 37 to 60% less food than controls after 3 d of exposure. The present results indicate that behavioral endpoints were more sensitive than some standard toxicity test endpoints and can effectively expand the sensitivity of standard toxicity tests for white sturgeon. Swimming behavior was impaired to the extent that survival in the field would likely be jeopardized. Such data would provide managers a useful metric for characterizing the risks of Cu contamination to white sturgeon. Environ Toxicol Chem 2019;38:132–144. Published 2018 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.
Swimming performance of a freshwater fish during exposure to high carbon dioxide
Deterring the spread of invasive fishes is a challenge for managers, and bigheaded carp (including bighead and silver carp, Hypophthalmichthys spp.) are invasive fish that have spread throughout large portions of the Mississippi River basin and threaten to invade the Great Lakes’ ecosystem. Studies have shown that elevated levels of carbon dioxide gas (CO2) have the ability to act as a nonphysical fish barrier, but little work has been done on the efficacy of CO2 to deter fish movement in flowing water. An annular swim flume was used to measure Uburst and sprint duration of the model species largemouth bass (Micropterus salmoides) across a range of pCO2 levels (< 400 μatm [ambient]; 10,000 μatm; 50,000 μatm; and 100,000 μatm). This species was tested as a proxy because of the likelihood of a similar CO2 response being produced, as well as constraints in obtaining and housing appropriately sized Asian carp. A significant decrease in Uburst swimming occurred when exposed to 100,000 μatm. No effects on sprint duration were detected. In both swimming tests, 15% of fish lost equilibrium when exposed to 50,000 μatm pCO2, while 50% of fish lost equilibrium when exposed to 100,000 μatm. Together, results define target levels for managers to impede the spread of largemouth bass and potentially other invasive freshwater fishes, helping guide policy to conserve aquatic ecosystems.
Hspb7 is a Cardioprotective Chaperone Facilitating Sarcomeric Proteostasis
Small heat shock proteins are chaperones with variable mechanisms of action. The function of cardiac family member Hspb7 is unknown, despite being identified through GWAS as a potential cardiomyopathy risk gene. We discovered that zebrafish hspb7 mutants display mild focal cardiac fibrosis and sarcomeric abnormalities. Significant mortality was observed in adult hspb7 mutants subjected to exercise stress, demonstrating a genetic and environmental interaction that determines disease outcome. We identified large sarcomeric proteins FilaminC and Titin as Hspb7 binding partners in cardiac cells. Damaged FilaminC undergoes autophagic processing to maintain sarcomeric homeostasis. Loss of Hspb7 in zebrafish or human cardiomyocytes stimulated autophagic pathways and expression of the sister gene encoding Hspb5. Inhibiting autophagy caused FilaminC aggregation in HSPB7 mutant human cardiomyocytes and developmental cardiomyopathy in hspb7 mutant zebrafish embryos. These studies highlight the importance of damage-processing networks in cardiomyocytes, and a previously unrecognized role in this context for Hspb7. Keywords: zebrafish, hESCs, heart development, cardiomyopathy, FilaminC
Metabolic costs of feeding predictively alter the spatial distribution of individuals in fish schools
Obstacles and swimming fish in flow create a wake with an alternating left/right vortex pattern known as a Kármán vortex street and reverse Kármán vortex street, respectively. An energy-efficient fish behavior resembling slaloming through the vortex street is called Kármán gaiting. This paper describes the use of a bioinspired array of pressure sensors on a Joukowski foil to estimate and control flow-relative position in a Kármán vortex street using potential flow theory, recursive Bayesian filtering, and trajectory-tracking feedback control. The Joukowski foil is fixed in downstream position in a flowing water channel and free to move on air bearings in the cross-stream direction by controlling its angle of attack to generate lift. Inspired by the lateral-line neuromasts found in fish, the sensing and control scheme is validated using off-the-shelf pressure sensors in an experimental testbed that includes a flapping device to create vortices. We derive a potential flow model that describes the flow over a Joukowski foil in a Kármán vortex street and identify an optimal path through a Kármán vortex street using empirical observability. The optimally observable trajectory is one that passes through each vortex in the street. The estimated vorticity and location of the Kármán vortex street are used in a closed-loop control to track either the optimally observable path or the energetically efficient gait exhibited by fish. Results from the closed-loop control experiments in the flow tank show that the artificial lateral line in conjunction with a potential flow model and Bayesian estimator allow the robot to perform fish-like slaloming behavior in a Kármán vortex street. This work is a precursor to an autonomous robotic fish sensing the wake of another fish and/or performing pursuit and schooling behavior.
Combined effects of hypoxia or elevated temperature and Deepwater Horizon crude oil exposure on juvenile mahi-mahi swimming performance
Mechanisms of toxic action of copper and copper nanoparticles in two Amazon fish species: Dwarf cichlid (Apistogramma agassizii) and cardinal tetra (Paracheirodon axelrodi)
Background In the wild, matrinchã (Brycon amazonicus) and tambaqui (Colossoma macropomum) rely strongly on their swimming capacity to perform feeding, migration and reproductive activities. Sustained swimming speed in fishes is performed almost exclusively by aerobic red muscles. The white muscle has high contraction power, but fatigue quickly, being used mainly in sprints and bursts, with a maximum duration of few seconds. The Ucrit test, an incremental velocity procedure, is mainly a measure of the aerobic capacity of a fish, but with a high participation of anaerobic metabolism close to the velocity of fatigue. Our previous study has indicated a high swimming performance of matrinchã (Ucrit) after hypoxia exposure, despite increased levels of lactate in plasma. In contrast, tambaqui with high lactate levels in plasma presented very low swimming performance. Therefore, we aimed to study the resistance of matrinchã and tambaqui to the increased lactate levels in muscle over an incremental velocity test (Ucrit). As a secondary aim, we analyzed the differences in anaerobic metabolism in response to environmental hypoxia, which could also support the better swimming performance of matrinchã, compared to tambaqui. Methods We measured, over incremented velocities in both species, the metabolic rate (the oxygen consumption by the fish; MO2), and the concentrations of lactate and nitrites and nitrates (NOx) in muscles. NOx was measured as an indicator of nitric oxide and its possible role in improving cardiorespiratory capacity in these fishes, which could postpone the use of anaerobic metabolism and lactate production during the swimming test. Also, we submitted fishes until fatigue and hypoxia (0.5 mg L−1) and measured, in addition to the previous parameters, lactate dehydrogenase activity (LDH; the enzyme responsible for lactate production), since that swimming performance could also be explained by the anaerobic capacity of producing ATP. Results Matrinchã exhibited a better swimming performance and higher oxygen consumption rates. Lactate levels were higher in matrinchã only at the moment of fatigue. Under hypoxia, LDH activity increased in the white muscle only in tambaqui, but averages were always higher in matrinchã. Discussion and conclusions The results suggest that matrinchã is more resistant than tambaqui regarding lactate accumulation in muscle at the Ucrit test, but it is not clear how much it contributes to postpone fatigue. The higher metabolic rate possibly allows the accumulated lactate to be used as aerobic fuel by the matrinchã, improving swimming performance. More studies are needed regarding matrinchã’s ability to oxidize lactate, the effects of exercise on muscle acidification, and the hydrodynamics of these species, to clarify why matrinchã is a better swimmer than tambaqui.
The physiology of leadership in fish shoals: leaders have lower maximal metabolic rates and lower aerobic scope
The question of who leads and who follows is crucial to our understanding of the collective movements of group‐living animals. Various characteristics associated with leadership have been documented across a range of social taxa, including hunger, motivation, dominance and personality. Comparatively little is known about the physiological mechanisms that underlie leadership. Here, we tested whether the metabolic phenotype of individual fish (x‐ray tetras, Pristella maxillaris ) determined their relative position within a moving shoal and their tendency to act as leaders. In contrast to previous work, we found that individuals with low maximal metabolic rates and low aerobic scope tended to be more likely to be found at the front of shoals and were more likely to act as leaders. We suggest that leadership by low‐performing individuals leads to greater group cohesion. However, in more challenging environmental contexts, such as flowing water, higher performing animals may be more likely to become leaders while low‐performing individuals seek the more favourable hydrodynamic conditions at the rear of the group. Hence, the travelling speed of the group may mediate the relationship between metabolic phenotype and leadership.
Aerobic capacities and swimming performance of polar cod (Boreogadus saida) under ocean acidification and warming conditions
Polar cod, Boreogadus saida, is an important prey species in the Arctic ecosystem, yet its habitat is changing rapidly: Climate change, through rising seawater temperatures and CO2 concentrations, is projected to be most pronounced in Arctic waters. This study aimed at investigating the influence of ocean acidification and warming on maximum performance parameters of B. saida as indicators for the species’ acclimation capacities under environmental conditions projected for the end of this century. After four months at four acclimation temperatures (0, 3, 6, 8°C) each combined with two PCO2 levels (390 and 1170 µatm), aerobic capacities and swimming performance of B. saida were recorded following a Ucrit protocol. At both CO2 levels, standard metabolic rate (SMR) was elevated at the highest acclimation temperature indicating thermal limitations. Maximum metabolic rate (MMR) increased continuously with temperature, suggesting an optimum temperature for aerobic scope for exercise (ASex) at 6°C. Aerobic swimming performance (Ugait) increased with acclimation temperature irrespective of CO2 levels, while critical swimming speed (Ucrit) did not reveal any clear trend with temperature. Hypercapnia evoked an increase in MMR (and thereby ASex). However, swimming performance (both Ugait and Ucrit) was impaired under elevated near-future PCO2 conditions, indicating reduced efficiencies of oxygen turnover. The contribution of anaerobic metabolism to swimming performance was overall very low, and further reduced under hypercapnia. Our results revealed high sensitivities of maximum performance parameters (MMR, Ugait, Ucrit) of B. saida to ocean acidification. Impaired swimming capacity under ocean acidification may reflect reduced future competitive strength of B. saida.
Ocean acidification does not limit squid metabolism via blood oxygen supply
Ocean acidification is hypothesized to limit the performance of squids due to their exceptional oxygen demand and pH-sensitivity of blood-oxygen binding, which may reduce oxygen supply in acidified waters. The critical oxygen partial pressure (Pcrit), the PO2 below which oxygen supply cannot match basal demand, is a commonly reported index of hypoxia tolerance. Any CO2-induced reduction in oxygen supply should be apparent as an increase in Pcrit. In this study, we assessed the effects of CO2 (46-143 Pa; 455-1410 μatm) on the metabolic rate and Pcrit of two squid species - Dosidicus gigas and Doryteuthis pealeii - through manipulative experiments. We also developed a model, with inputs for hemocyanin pH-sensitivity, blood PCO2, and buffering capacity that simulates blood oxygen supply under varying seawater CO2 partial pressures. We compare model outputs to measured Pcrit in squids. Using blood-O2 parameters from the literature for model inputs, we estimated that, in the absence of blood acid-base regulation, an increase in seawater PCO2 to 100 Pa (≈ 1000 μatm) would result in a maximum drop in arterial hemocyanin-O2 saturation by 1.6% at normoxia and a Pcrit increase of ≈0.5 kPa. Our live-animal experiments support this supposition, as CO2 had no effect on measured metabolic rate or Pcrit in either squid species.
Convergent evolution of locomotor morphology but not performance in Gymnotiform swimmers
Convergent evolution of a novel locomotor strategy implies that a fitness benefit may be associated with the new gait. Opportunities to study this phenomenon are often constrained by a lack of transitional taxa, but teleost fishes offer examples of extant species across such evolutionary shifts in gait. For instance, one species from Osteoglossiformes and the entire order of Gymnotiformes independently evolved a novel gait, gymnotiform locomotion, where thrust is produced by the undulation of an elongate anal fin. Here, we investigate whether this convergence in gait is also associated with similarities in shape, burst swimming abilities, and/or steady‐swimming energetics. Specifically, we measured body and fin morphology of fish within Gymnotiformes and Osteoglossiformes, along with closely related Siluriformes and Cypriniformes, to examine the link between gymnotiform locomotion and morphology in a phylogenetic context. Second, we tested the burst swimming capabilities and oxygen consumption during endurance swimming of a subset of the same gymnotiform, osteoglossiform, and cypriniform species, including “transitional” Osteoglossiformes that exhibit intermediate gaits, to determine whether the evolution of this specialized gait is associated with a change in either of these performance metrics. Our results suggest that convergence on the gymnotiform gait is associated with morphological convergence, but does not constrain a fish's maximum sprinting speeds or their energetic demands during steady swimming.
Comparison of aerobic scope for metabolic activity in aquatic ectotherms with temperature related metabolic stimulation: a novel approach for aerobic power budget
Kurt Paschke 1,2 José Agüero 3 Paulina Gebauer 4 Fernando Díaz 5 Maite Mascaró 6,7 Estefany López-Ripoll 3 Denisse Re 5 Claudia Caamal-Monsreal 6,7 Nelly Tremblay 6,8 Hans-Otto Pörtner 9 Carlos Rosas 6,7 * 1 Instituto de Acuicultura, Universidad Austral de Chile, Puerto Montt, Chile 2 Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Punta Arenas, Chile 3 Posgrado en Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico 4 Centro i~mar, Universidad de Los Lagos, Puerto Montt, Chile 5 Laboratorio de Ecofisiología de Organismos Acuáticos, Departamento de Biotecnología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Mexico 6 Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias, Universidad Nacional Autónoma de Mexico, Sisal, Mexico 7 Laboratorio de Resiliencia Costera (LANRESC, CONACYT), Sisal, Mexico 8 Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Biologische Anstalt Helgoland, Shelf Seas Systems Ecology, Helgoland, Germany 9 Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Integrative Ecophysiology, Bremerhaven, Germany Considering that swim-flume or chasing methods fail in the estimation of maximum metabolic rate and in the estimation of Aerobic Scope (AS) of sedentary or sluggish aquatic ectotherms, we propose a novel conceptual approach in which high metabolic rates can be obtained through stimulation of organism metabolic activity using high and low non-lethal temperatures that induce high (HMR) and low metabolic rates (LMR), This method was defined as TIMR: Temperature Induced Metabolic Rate, designed to obtain an aerobic power budget based on temperature-induced metabolic scope which may mirror thermal metabolic scope (TMS = HMR—LMR). Prior to use, the researcher should know the critical thermal maximum (CT max) and minimum (CT min) of animals, and calculate temperature TIMR max (at temperatures −5–10% below CT max) and TIMR min (at temperatures +5–10% above CT min), or choose a high and low non-lethal temperature that provoke a higher and lower metabolic rate than observed in routine conditions. Two sets of experiments were carried out. The first compared swim-flume open respirometry and the TIMR protocol using Centropomus undecimalis (snook), an endurance swimmer, acclimated at different temperatures. Results showed that independent of the method used and of the magnitude of the metabolic response, a similar relationship between maximum metabolic budget and acclimation temperature was observed, demonstrating that the TIMR method allows the identification of TMS. The second evaluated the effect of acclimation temperature in snook, semi-sedentary yellow tail ( Ocyurus chrysurus ), and sedentary clownfish ( Amphiprion ocellaris ), using TIMR and the chasing method. Both methods produced similar maximum metabolic rates in snook and yellowtail fish, but strong differences became visible in clownfish. In clownfish, the TIMR method led to a significantly higher TMS than the chasing method indicating that chasing may not fully exploit the aerobic power budget in sedentary species. Thus, the TIMR method provides an alternative way to estimate the difference between high and low metabolic activity under different acclimation conditions that, although not equivalent to AS may allow the standardized estimation of TMS that is relevant for sedentary species where measurement of AS via maximal swimming is inappropriate.
Shoal size as a key determinant of vulnerability to capture under a simulated fishery scenario
Group living is widespread among animals and has a range of positive effects on individual foraging and predator avoidance. For fishes, capture by humans constitutes a major source of mortality, and the ecological effects of group living could carry‐over to harvest scenarios if fish are more likely to interact with fishing gears when in social groups. Furthermore, individual metabolic rate can affect both foraging requirements and social behaviors, and could, therefore, have an additional influence on which fish are most vulnerable to capture by fishing. Here, we studied whether social environment (i.e., social group size) and metabolic rate exert independent or interactive effects on the vulnerability of wild zebrafish ( Danio rerio ) to capture by a baited passive trap gear. Using video analysis, we observed the tendency for individual fish to enter a deployed trap when in different shoal sizes. Fish in larger groups were more vulnerable to capture than fish tested individually or at smaller group sizes. Specifically, focal fish in larger groups entered traps sooner, spent more total time within the trap, and were more likely to re‐enter the trap after an escape. Contrary to expectations, there was evidence that fish with a higher SMR took longer to enter traps, possibly due to a reduced tendency to follow groupmates or attraction to conspecifics already within the trap. Overall, however, social influences appeared to largely overwhelm any link between vulnerability and metabolic rate. The results suggest that group behavior, which in a natural predation setting is beneficial for avoiding predators, could be maladaptive under a trap harvest scenario and be an important mediator of which traits are under harvest associated selection.
Does hypoxia or different rates of re-oxygenation after hypoxia induce an oxidative stress response in Cyphocharax abramoides (Kner 1858), a Characid fish of the Rio Negro?
Nutritional physiology of mahi-mahi (Coryphaena hippurus): Postprandial metabolic response to different diets and metabolic impacts on swim performance
The lumpfish (Cyclopterus lumpus) is a semi-pelagic globiform teleost native to the North Atlantic with a ventral suction disc that allows for attachment onto surfaces. Some local populations are in decline and the species has recently become important in salmonid sea cages as cleaner fish. Little is known about the basal physiology of the lumpfish, and a characterization of thermal performance, aerobic capacity, swimming behaviour and stress response is therefore warranted. In the present study, swim tunnel respirometry was performed on lumpfish acclimated to 3, 9 or 15°C. Higher temperatures were also attempted, but at 18°C their behaviour became erratic and 15% of the fish died over 3 weeks of acclimation. Water current tolerance was assessed in two size classes (∼75g and∼300g) both with and without the ability to voluntarily use the ventral suction disc. Lastly, blood samples were taken from resting, exhausted and recovered fish to assess haematological effects of exercise stress. Lumpfish had relatively low aerobic scopes that increased slightly with temperature. Critical swimming speed was poor, increasing within the tested temperatures from 1.3 to 1.7 body lengths s−1 in 300 g fish. They struggled to remain sucked onto surfaces at currents above 70−110 cm s−1, depending on size. Acute stress effects were modest or non-existent in terms of changes in cortisol, lactate, glucose, erythrocytes and ion balance. These results describe a typical sluggish and benthic species, which is contradictory to the pelagic nature of lumpfish in large parts of its lifecycle.
Dietary sodium heptanoate helps to improve feed efficiency, growth hormone status and swimming performance in gilthead sea bream (Sparus aurata)
The potential benefits of a commercial preparation of heptanoate (NOREL, HEPTON®) were evaluated in an 11‐week gilthead sea bream feeding trial (May–August), using a factorial design with four isoproteic and isoenergetic diets. Fish meal (FM) was added at 200 g/kg in D1–D2 diets and at 50 g/kg in D3–D4 diets, which also contained fish peptones and plant proteins as source of proteins. Heptanoate was added at 3 g/kg in D2 and D4 diets. All fish grew from 13–14 g to 81–84 g with an overall feed efficiency (FE) of 0.91–0.94. An early impairment of FE (weeks 1–4) was found with the standard FM‐based diet (D1), but this detrimental condition was reversed by heptanoate, increasing FE from 0.88 in D1 fish to 0.99 in D2 fish. Further improvements were progressively diluted over time, remaining D2 and D3–D4 fed fish almost undistinguishable through all the trial. Heptanoate supplementation produced higher hepatic glycogen depots, but no signs of histopathological damage were found in liver or intestine. Other lasting heptanoate effects included changes in plasma antioxidant capacity, plasma cortisol and growth hormone levels, and measures of respirometry in swimming performance tests. Altogether, it supports the potential use of heptanoate to speed up adaptive and healthy metabolic states of farmed fish to cope with challenging culture conditions.
Swim bladder inflation failure affects energy allocation, growth, and feed conversion of California Yellowtail (Seriola dorsalis) in aquaculture
The capability of early life history stage fishes to access nursery habitat within managed salt marshes is dependent on their ability to negotiate water control structures (WCSs). Knowledge of swimming ability and hydrodynamic preferences is essential to assess the impact of WCSs on fish movement in managed marshes. These data, however, are lacking for many common estuarine fishes, and the utility of the data for the few species examined thus far is limited. We examined critical swimming speeds and derived linear relationships between fish size and swimming speed for juveniles of six common estuarine fish species of the southeast U.S. and northern Gulf of Mexico coasts. White mullet Mugil curema displayed the greatest swimming ability among these six species and was able to swim against currents ≥ 30 cm s−1 higher than the other species examined at the same size. The remaining species displayed lower critical swimming speeds and were classified into groups of moderate (pinfish Lagodon rhomboides, striped mullet Mugil cephalus) or slow (silver perch Bairdiella chrysoura, spotfin mojarra Eucinostomus argenteus, spot Leiostomus xanthurus) swimmers. Our results suggest that high-flow conditions at WCSs would likely preclude the passage of all but the largest juvenile fishes, and passage for most juveniles would occur under low-flow conditions; these flows at WCSs are dictated largely by site-specific tidal and weather conditions.
High postural costs and anaerobic metabolism during swimming support the hypothesis of a U-shaped metabolism–speed curve in fishes
Significance Hydrodynamic theory predicts that the energetic costs required for fishes to swim should vary with speed according to a U-shaped curve, with an expected energetic minimum at intermediate cruising speeds. Empirical studies to date do not support this view. Here we report a complete dataset on a swimming batoid fish that shows a clear energetic minimum at intermediate swimming speeds. We also demonstrate that this species uses a combination of aerobic and anaerobic metabolism to fuel steady swimming at each speed, including the slowest speeds tested. This contradicts the widespread assumption that fish use only aerobic metabolism at low speeds. Kinematic data support this nonlinear relationship by also showing a U-shaped pattern to body angle during steady swimming. Swimming performance is considered a key trait determining the ability of fish to survive. Hydrodynamic theory predicts that the energetic costs required for fishes to swim should vary with speed according to a U-shaped curve, with an expected energetic minimum at intermediate cruising speeds and increasing expenditure at low and high speeds. However, to date no complete datasets have shown an energetic minimum for swimming fish at intermediate speeds rather than low speeds. To address this knowledge gap, we used a negatively buoyant fish, the clearnose skate Raja eglanteria, and took two approaches: a classic critical swimming speed protocol and a single-speed exercise and recovery procedure. We found an anaerobic component at each velocity tested. The two approaches showed U-shaped, though significantly different, speed–metabolic relationships. These results suggest that ( i ) postural costs, especially at low speeds, may result in J- or U-shaped metabolism–speed curves; ( ii ) anaerobic metabolism is involved at all swimming speeds in the clearnose skate; and ( iii ) critical swimming protocols might misrepresent the true costs of locomotion across speeds, at least in negatively buoyant fish.
Species-Specific Responses of Juvenile Rockfish to Elevated pCO2: From Behavior to Genomics.
In the California Current ecosystem, global climate change is predicted to trigger large-scale changes in ocean chemistry within this century. Ocean acidification—which occurs when increased levels of atmospheric CO2 dissolve into the ocean—is one of the biggest potential threats to marine life. In a coastal upwelling system, we compared the effects of chronic exposure to low pH (elevated pCO2) at four treatment levels (i.e., pCO2 = ambient [500], moderate [750], high [1900], and extreme [2800 μatm]) on behavior, physiology, and patterns of gene expression in white muscle tissue of juvenile rockfish (genus Sebastes), integrating responses from the transcriptome to the whole organism level. Experiments were conducted simultaneously on two closely related species that both inhabit kelp forests, yet differ in early life history traits, to compare high-CO2 tolerance among species. Our findings indicate that these congeners express different sensitivities to elevated CO2 levels. Copper rockfish (S. caurinus) exhibited changes in behavioral lateralization, reduced critical swimming speed, depressed aerobic scope, changes in metabolic enzyme activity, and increases in the expression of transcription factors and regulatory genes at high pCO2 exposure. Blue rockfish (S. mystinus), in contrast, showed no significant changes in behavior, swimming physiology, or aerobic capacity, but did exhibit significant changes in the expression of muscle structural genes as a function of pCO2, indicating acclimatization potential. The capacity of long-lived, late to mature, commercially important fish to acclimatize and adapt to changing ocean chemistry over the next 50–100 years is likely dependent on species-specific physiological tolerances.
While interspecific competition is prevalent in natural systems, we do not yet understand how it can influence an individual’s phenotype within its lifetime and how this might affect performance. Morphology and swimming performance are two important fitness-related traits in fishes. Both traits are essential in acquiring and defending resources as well as avoiding predation. Here, we examined if interspecific competition could induce changes in morphology and affect the swimming performance of two strains of juvenile Atlantic salmon (Salmo salar). We imposed competitive scenarios on the fish using artificial streams containing different combinations of four interspecific competitors. Exposure to interspecific competitors induced morphological changes over time, through the development of deeper bodies, whereas controls free of interspecific competitors developed more fusiform body shapes. Furthermore, swimming performance was correlated to fusiform morphologies and was weaker for Atlantic salmon in competitive scenarios vs. controls. This implies that interspecific competition has direct effects on these fitness-related traits in Atlantic salmon. To the best of our knowledge, this is the first time that morphology, an important fitness-related trait linked to swimming performance, has been shown to be negatively impacted through interactions with an interspecific competitor.
Swimming speeds of Mediterranean settlement‐stage fish larvae nuance Hjort's aberrant drift hypothesis
Historically, the mortality of early‐life stages of marine fishes was supposed to be mostly caused by poor feeding during a critical period and aberrant drifting away from favorable recruitment areas. While fish larvae may display remarkable swimming abilities, Hjort's aberrant drift hypothesis has rarely been tested. In this study, we measured critical swimming speed ( U crit ) of settlement‐stage larvae of six coastal, warm temperate Mediterranean fish species, for which no data were previously available (Sparidae: Boops boops, Diplodus annularis, Spicara smaris, Spondyliosoma cantharus; Pomacentridae: Chromis chromis; Mugilidae sp.). Their swimming speeds were comparable with those of other temperate species, but also with the speeds of tropical species, which are considered as very fast swimmers. Mugilidae were the fastest (29.2 cm s −1 ), followed by Pomacentridae (22.8 cm s −1 ) and Sparidae (11.6 cm s −1 ). Most larvae swam in an inertial regime (Reynolds number > 1000). Those swimming speeds were then implemented in a Lagrangian model of the competency period of these species, set in the same area (the Ligurian Sea) and at the same time (June 2014) as the observations. In this modeling experiment, directional swimming strongly increased the proportion of successful settlers, independent of mesoscale hydrological structures. Fish larvae could settle on the coast from as far as tens of kilometers offshore, in just 4 d. These findings suggest that aberrant drift is unlikely to occur for strong swimming temperate larvae and show that larval behavior should be considered on equal footing with ocean currents when assessing larval fish dispersal.
Neuregulin‐1 is essential for nerve plexus formation during cardiac maturation
The Neuregulin‐1 (Nrg1)/ErbB pathway plays multiple, critical roles in early cardiac and nervous system development and has been implicated in both heart and nerve repair processes. However, the early embryonic lethality of mouse Nrg1 mutants precludes an analysis of Nrg1's function in later cardiac development and homeostasis. In this study, we generated a novel nrg1 null allele targeting all known isoforms of nrg1 in zebrafish and examined cardiac structural and functional parameters throughout development. We found that zebrafish nrg1 mutants instead survived until young adult stages when they exhibited reduced survivorship. This coincided with structural and functional defects in the developing juvenile and young adult hearts, as demonstrated by reduced intracardiac myocardial density, cardiomyocyte cell number, swimming performance and dysregulated heartbeat. Interestingly, nrg1 mutant hearts were missing long axons on the ventricle surface by standard length ( SL ) 5 mm, which preceded juvenile and adult cardiac defects. Given that the autonomic nervous system normally exerts fine control of cardiac output through this nerve plexus, these data suggest that Nrg1 may play a critical role in establishing the cardiac nerve plexus such that inadequate innervation leads to deficits in cardiac maturation, function and survival.
How does mutation affect the distribution of phenotypes?
The potential for mutational processes to influence patterns of neutral or adaptive phenotypic evolution is not well understood. If mutations are directionally biased, shifting trait means in a particular direction, or if mutation generates more variance in some directions of multivariate trait space than others, mutation itself might be a source of bias in phenotypic evolution. Here, we use mutagenesis to investigate the affect of mutation on trait mean and (co)variances in zebrafish, Danio rerio. Mutation altered the relationship between age and both prolonged swimming speed and body shape. These observations suggest that mutational effects on ontogeny or aging have the potential to generate variance across the phenome. Mutations had a far greater effect in males than females, although whether this is a reflection of sex-specific ontogeny or aging remains to be determined. In males, mutations generated positive covariance between swimming speed, size, and body shape suggesting the potential for mutation to affect the evolutionary covariation of these traits. Overall, our observations suggest that mutation does not generate equal variance in all directions of phenotypic space or in each sex, and that pervasive variation in ontogeny or aging within a cohort could affect the variation available to evolution.
Growth potential and habitat requirements of endangered age-0 pallid sturgeon (Scaphirhynchus albus) in the Missouri River, USA, determined using a individual-based model framework.
An individual‐based model framework was used to evaluate growth potential of the federally endangered pallid sturgeon ( Scaphirhynchus albus ) in the Missouri River. The model, developed for age‐0 sturgeon, combines information on functional feeding response, bioenergetics and swimming ability to regulate consumption and growth within a virtual foraging arena. Empirical data on water temperature, water velocity and prey density were obtained from three sites in the Missouri River and used as inputs in the model to evaluate hypotheses concerning factors affecting pallid sturgeon growth. The model was also used to evaluate the impacts of environmental heterogeneity and water velocity on individual growth variability, foraging success and dispersal ability. Growth was simulated for a period of 100 days using 100 individuals (first feeding; 19 mm and 0.035 g) per scenario. Higher growth was shown to occur at sites where high densities of Ephemeroptera and Chironomidae larvae occurred throughout the growing season. Highly heterogeneous habitats (i.e., wide range of environmental conditions) and moderate water velocities (0.3 m/s) were also found to positively affect growth rates. The model developed here provides an important management and conservation tool for evaluating growth hypotheses and(or) identifying habitats in the Missouri River that are favourable to age‐0 pallid sturgeon growth.
Myomaker is required for the fusion of fast-twitch myocytes in the zebrafish embryo.
Understanding how the current warming trends affect fish populations is crucial for effective conservation and management. To help define suitable thermal habitat for juvenile Chinook salmon, the thermal performance of juvenile Chinook salmon acclimated to either 15 or 19°C was tested across a range of environmentally relevant acute temperature changes (from 12 to 26°C). Swim tunnel respirometers were used to measure routine oxygen uptake as a measure of routine metabolic rate (RMR) and oxygen uptake when swimming maximally as a measure of maximal metabolic rate (MMR) at each test temperature. We estimated absolute aerobic scope (AAS = MMR - RMR), the capacity to supply oxygen beyond routine needs, as well as factorial aerobic scope (FAS = MMR/RMR). All fish swam at a test temperature of 23°C regardless of acclimation temperature, but some mortality occurred at 25°C during MMR measurements. Overall, RMR and MMR increased with acute warming, but aerobic capacity was unaffected by test temperatures up to 23°C in both acclimation groups. The mean AAS for fish acclimated and tested at 15°C (7.06 ± 1.76 mg O 2 kg -1 h -1 ) was similar to that measured for fish acclimated and tested at 19°C (8.80 ± 1.42 mg O 2 kg -1 h -1 ). Over the entire acute test temperature range, while MMR and AAS were similar for the two acclimation groups, RMR was significantly lower and FAS consequently higher at the lower test temperatures for the fish acclimated at 19°C. Thus, this stock of juvenile Chinook salmon shows an impressive aerobic capacity when acutely warmed to temperatures close to their upper thermal tolerance limit, regardless of the acclimation temperature. These results are compared with those for other salmonids, and the implications of our findings for informing management actions are discussed.
Consequences of climate-induced low oxygen conditions for commercially important fish
Oxygen availability is key in determining habitat suitability for marine fish. As a result of climate change, low oxygen conditions are predicted to occur more frequently and over a greater geographic extent. Studies assessing the long-term chronic effects and impacts for commercially important fish are rare. To assess the potential effects of climate-induced low oxygen on fisheries, physiological data, such as critical thresholds, derived from laboratory experiments on 5 commercial fish species were integrated with hindcast and future oxygen projections from the hydrodynamic-biogeochemical model GETM-ERSEM. By using this approach, changes in habitat suitability from the 1970s to 2100 were identified. In the North Sea, the current extent of areas with the lowest oxygen levels is smaller than during the 1970s, with improved oxygen conditions having less impact on species’ critical thresholds. Oxygen levels are expected to decrease again in the coming century due to climate change, although not to the minima of previous decades. In affected areas and years, intermediate oxygen levels could have temporary impacts in late summer on swimming, growth, ingestion and metabolic scope of adult fish. These results demonstrate that although physical model oxygen projections help to provide insight, they are insufficient by themselves to predict the full potential impacts of climate change on fish distribution and fisheries. Such modelling requires underpinning through experimentation, particularly of the physiological effects of climate change on different life stages so that effects on reproduction, growth and commercial catches can be determined and tailored, and robust management measures put in place.
Relationships between Chinook Salmon Swimming Performance and Water Quality in the San Joaquin River, California.
There is currently only a limited understanding of the relationship between water quality and predation on Pacific salmon Oncorhynchus spp. smolts. We addressed the hypothesis that poor water quality will decrease a smolt's swimming performance and presumably its predator evasion capabilities. Predation is a major factor affecting salmon smolt survival throughout the San Joaquin River and the Sacramento–San Joaquin Delta of California. Prior studies have quantified predation rates, but the effect of water quality on predator evasion capability has not previously been evaluated. We quantified the swimming performance of juvenile Chinook Salmon O. tshawytscha in relation to water quality variables. The maximum swim speeds ( U max ) of 45 hatchery‐reared smolts (7.1–9.9 cm FL) were measured in controlled (laboratory) and field environments by using a mobile swim tunnel respirometer; measurements were obtained before and after the fish received a 2‐d exposure to the lower San Joaquin River while being held in flow‐through cages. To sample across a diversity of environmental conditions, we conducted trials during a 6‐week period that coincided with the peak smolt out‐migration. Regression models were constructed to evaluate relationships between swimming performance and four water quality covariates (water temperature, turbidity, dissolved oxygen, and conductivity). We found negative relationships between U max and both temperature and turbidity, and we described these relationships graphically. Our findings suggest that water quality management strategies with the potential to improve salmon smolt survival include managing temperatures and suspended sediment concentrations to optimize the swimming capacity of migrating smolts and possibly improve their ability to evade predators. Received July 12, 2016; accepted December 6, 2016 Published online February 21, 2017
Transgenerational inheritance of neurobehavioral and physiological deficits from developmental exposure to benzo[a]pyrene in zebrafish
Knecht, Andrea L; Truong, Lisa; Marvel, Skylar W; Reif, David M; Garcia, Abraham; Lu, Catherine; Simonich, Michael T; Teeguarden, Justin G; Tanguay, Robert L; (2017)
Benzo[a]pyrene (B[a]P) is a well-known genotoxic polycylic aromatic compound whose toxicity is dependent on signaling via the aryl hydrocarbon receptor (AHR). It is unclear to what extent detrimental effects of B[a]P exposures might impact future generations and whether transgenerational effects might be AHR-dependent. This study examined the effects of developmental B[a]P exposure on 3 generations of zebrafish. Zebrafish embryos were exposed from 6 to 120h post fertilization (hpf) to 5 and 10μM B[a]P and raised in chemical-free water until adulthood (F0). Two generations were raised from F0 fish to evaluate transgenerational inheritance. Morphological, physiological and neurobehavioral parameters were measured at two life stages. Juveniles of the F0 and F2 exhibited hyper locomotor activity, decreased heartbeat and mitochondrial function. B[a]P exposure during development resulted in decreased global DNA methylation levels and generally reduced expression of DNA methyltransferases in wild type zebrafish, with the latter effect largely reversed in an AHR2-null background. Adults from the F0 B[a]P exposed lineage displayed social anxiety-like behavior. Adults in the F2 transgeneration manifested gender-specific increased body mass index (BMI), increased oxygen consumption and hyper-avoidance behavior. Exposure to benzo[a]pyrene during development resulted in transgenerational inheritance of neurobehavioral and physiological deficiencies. Indirect evidence suggested the potential for an AHR2-dependent epigenetic route.
Physiological Ecology of Four Endemic Alabama Species and the Exotic Asiatic Weatherfish, Misgurnus anguillicaudatus (Cantor, 1842)
The occurrence of Asiatic Weatherfish, Misgurnus anguillicaudatus, in Alabama, a state known for its rich biodiversity, has generated concern among conservation managers. The current study used respirometry techniques to investigate the effects of increasing temperature on four native southeastern fishes (one cyprinid, two percids, and one elassomid) and the non-native M. anguillicaudatus. A minimum of five individuals of each species were used, and three experimental temperatures were chosen to represent spring and summer averages of northeast Alabama streams (15, 20, and 25°C). Overall, mean standard metabolic rates (SMRs) for M. anguillicaudatus were low (97.01, 127.75, and 158.50 mg O2 kg-1h-1 at 15, 20, and 25°C, respectively); M. anguillicaudatus was the only species for which SMR did not significantly increase with temperature (p = 0.467). In contrast, mean SMRs for all native species examined were higher than M. anguillicaudatus rates at a given temperature, and mean SMRs for Cyprinella caerulea, Etheostoma brevirostrum, and Etheostoma ditrema exhibited significant increases in SMR when temperatures were increased (e.g. 403.46, 704.42, and 1150.03 mg O2 kg-1h-1 at 25°C, respectively) (p < 0.01). Elassoma zonatum displayed highly significant increases in SMR when temperature increased from 15-20°C (p < 0.001). Overall, the abiotic tolerances of M. anguillicaudatus may facilitate further establishment that could lead to negative impacts on native species.
Do alluvial sand dunes create energetic refugia for benthic fishes? An experimental test with the endangered pallid sturgeon.
Non-indigenous species (NIS) can impact marine biodiversity and ecosystem structure and function. Once introduced into a new region, secondary dispersal is limited by the physiology of the organism in relation to the ambient environment and by complex interactions between a suite of ecological factors such as presence of predators, competitors, and parasites. Early prediction of dispersal potential and future ‘area of impact’ is challenging, but also a great asset in taking appropriate management actions. Aerobic scope (AS) in fish has been linked to various fitness-related parameters, and may be valuable in determining dispersal potential of aquatic invasive species in novel environments. Round goby, Neogobius melanostomus, one of the most wide-ranging invasive fish species in Europe and North America, currently thrives in brackish and fresh water, but its ability to survive in high salinity waters is unknown to date. We show that AS in round goby is reduced by 30% and blood plasma osmolality increased (indicating reduced capacity for osmoregulation) at salinities approaching oceanic conditions, following slow ramping (5 PSU per week) and subsequent long-term acclimation to salinities ranging between 0 and 30 PSU (8 days at final treatment salinities before blood plasma osmolality measurements, 12–20 additional days before respirometry). Survival was also reduced at the highest salinities yet a significant proportion (61%) of the fish survived at 30 PSU. Reduced physiological performance at the highest salinities may affect growth and competitive ability under oceanic conditions, but to what extent reduced AS and osmoregulatory capacity will slow the current 30 km year-1 rate of advance of the species through the steep salinity gradient from the brackish Baltic Sea and into the oceanic North Sea remains speculative. An unintended natural experiment is in progress to test whether the rate of advance slows down. At the current rate of advance the species will reach the oceanic North Sea by 2018/2019, therefore time for taking preventative action is short.
Adverse effects of parental zinc deficiency on metal homeostasis and embryonic development in a zebrafish model.
The high prevalence of zinc deficiency is a global public health concern, and suboptimal maternal zinc consumption has been associated with adverse effects ranging from impaired glucose tolerance to low birthweights. The mechanisms that contribute to altered development and poor health in zinc deficient offspring are not completely understood. To address this gap, we utilized the Danio rerio model and investigated the impact of dietary zinc deficiency on adults and their developing progeny. Zinc deficient adult fish were significantly smaller in size, and had decreases in learning and fitness. We hypothesized that parental zinc deficiency would have an impact on their offspring’s mineral homeostasis and embryonic development. Results from mineral analysis showed that parental zinc deficiency caused their progeny to be zinc deficient. Furthermore, parental dietary zinc deficiency had adverse consequences for their offspring including a significant increase in mortality and decreased physical activity. Zinc deficient embryos had altered expression of genes that regulate metal homeostasis including several zinc transporters (ZnT8, ZnT9) and the metal-regulatory transcription factor 1 (MTF-1). Zinc deficiency was also associated with decreased expression of genes related to diabetes and pancreatic development in the embryo (Insa, Pax4, Pdx1). Decreased expression of DNA methyltransferases (Dnmt4, Dnmt6) was also found in zinc deficient offspring, which suggests that zinc deficiency in parents may cause altered epigenetic profiles for their progeny. These data should inform future studies regarding zinc deficiency and pregnancy and suggest that supplementation of zinc deficient mothers prior to pregnancy may be beneficial. Keywords: Zebrafish, zinc deficiency, epigenetics, zinc homeostasis, fitness, learning
Respirometry increases cortisol levels in rainbow trout Oncorhynchus mykiss: implications for measurements of metabolic rate
This study aimed to assess the extent to which chasing, handling and confining Oncorhynchus mykiss to a small respirometer chamber during respirometric experiments is stressful and affects metabolic measurements. The study observed increased cortisol levels in animals tested using a chase protocol and subsequent intermittent‐flow respirometry, suggesting that this procedural treatment may stress animals.
Q10 measures of metabolic performance and critical swimming speed in King George whiting Sillaginodes punctatus
This study examined thermally driven changes in swimming performance and aerobic metabolism ( Q 10 and aerobic scope of activity) of adult King George whiting Sillaginodes punctatus to the coldest (16° C) and the warmest (26° C) temperature encountered by this species. Compensation of aerobic scope, higher maximal swimming speeds and a maintained capacity to repay oxygen debt indicate that this species is capable of thermal acclimation to conditions expected under global warming.
How the expression of green fluorescent protein and human cardiac actin in the heart influences cardiac function and aerobic performance in zebrafish Danio rerio
The present study examined how the expression of enhanced green fluorescent protein (eGFP) and human cardiac actin (ACTC) in zebrafish Danio rerio influences embryonic heart rate ( R H ) and the swim performance and metabolic rate of adult fish. Experiments with the adults involved determining the critical swimming speed ( U crit, the highest speed sustainable and measure of aerobic capacity) while measuring oxygen consumption. Two different transgenic D. rerio lines were examined: one expressed eGFP in the heart ( tg(cmlc:egfp) ), while the second expressed ACTC in the heart and eGFP throughout the body ( tg(cmlc:actc,ba:egfp) ). It was found that R H was significantly lower in the tg(cmlc:actc,ba:egfp) embryos 4 days post‐fertilization compared to wild‐type (WT) and tg(cmlc:egfp). The swim experiments demonstrated that there was no significant difference in U crit between the transgenic lines and the wild‐type fish, but metabolic rate and cost of transport (oxygen used to travel a set distance) was nearly two‐fold higher in the tg(cmlc:actc,ba:egfp) fish compared to WT at their respective U crit. These results suggest that the expression of ACTC in the D. rerio heart and the expression of eGFP throughout the animal, alters cardiac function in the embryo and reduces the aerobic efficiency of the animal at high levels of activity.
Hormonal responsiveness to stress is negatively associated with vulnerability to angling capture in fish
Differences in behavior and physiology amongst individuals often alter relative fitness levels in the environment. However, the ideal behavioral/physiological phenotype in a given environment may be altered by human activity, leading to an evolutionary response in the affected population. One example of this process can be found in fisheries (including recreational freshwater fisheries), where selective capture and harvest of individuals with certain phenotypes can drive evolutionary change. While some life history traits and behavioral tendencies influencing capture likelihood have been studied, the physiological mechanisms driving this vulnerability remain poorly understood. To address this, we assessed how two major physiological characteristics (hormonal responsiveness to stress and metabolic phenotype) and one behavioral characteristic (boldness) impact the likelihood of an individual being captured by anglers. Largemouth bass, Micropterus salmoides, derived from a population artificially selected for differential angling vulnerability were assessed for boldness and for stress responsiveness (as indicated by plasma cortisol levels) following an air-exposure challenge. Largemouth bass were then stocked into a pond where experimental angling trials took place, and a subset of captured and uncaptured fish were afterwards assessed for metabolic phenotype. The results showed that stress responsiveness was the primary driver of angling vulnerability, with individuals that experienced lower rises in cortisol following the air-exposure challenge more likely to be captured. Neither boldness nor metabolic phenotype influenced capture probability. The results from this study indicate that fisheries-induced selective pressure may act on physiology, potentially altering stress responsiveness and its associated behaviors in populations exploited by recreational anglers.
An early life hypoxia event has a long-term impact on protein digestion and growth in juvenile European sea bass
Ocean warming, eutrophication and consequent decrease in oxygen lead to smaller average fish size. Although such responses are well-known in an evolutionary context, involving multiple generations, it appears to be incompatible with current rapid environmental change. Rather, phenotypic plasticity could provide a means for marine fish to cope with rapid environmental changes. However, little is known about the mechanisms underlying plastic responses to environmental conditions that favour small phenotypes.
Contrasting fundamental and realized niches: two fishes with similar thermal performance curves occupy different thermal habitats
Human alteration of thermal regimes of freshwater ecosystems is creating an urgent need to understand how freshwater ectotherms will fare under different thermal futures. Two key questions are: 1) how well do the fundamental thermal niches of ectotherms map to their realized thermal niches, and 2) which axes of the fundamental thermal niche must be modeled to predict temperature-dependent fitness in real ecosystems? The first question is particularly challenging in riverine systems, where gradients in temperature are strongly confounded by gradients in other biotic and abiotic drivers. To address these questions, we compared the realized and fundamental thermal niches of 2 congeneric riverine fish: Gadopsis marmoratus and Gadopsis bispinosus. We characterized their realized thermal niches by examining their distributions in relation to environmental temperature at multiple scales. We characterized their fundamental thermal niches by doing laboratory experiments on the thermal sensitivity of swimming performance and metabolic rates, particularly aerobic scope. The distributions of the 2 species supported the idea that they have different realized thermal niches, with G. bispinosus occupying cooler habitats than G. marmoratus. Despite this, we detected no significant differences in the shapes of thermal performance curves defining 2 axes of their fundamental niches: swimming performance and aerobic scope. Our results suggest that either the distributions of these 2 species are driven by factors other than temperature or that swimming performance and aerobic scope were not suitable proxies of their fundamental thermal niches. Our study shows that modeling the thermal niches of ectotherms along the river continuum is not straightforward. If we are to forecast effects of thermal futures effectively and efficiently, we must do more to decipher the relative influence of temperature and other abiotic drivers on the fitness of riverine ectotherms.
The effect of temperature on the resting and post-exercise metabolic rates and aerobic metabolic scope in shortnose sturgeon Acipenser brevirostrum
The effects of acclimation temperature (15, 20, 25 °C) on routine oxygen consumption and post-exercise maximal oxygen consumption rates (MO2) were measured in juvenile shortnose sturgeon (Acipenser brevirostrum LeSueur, 1818). The routine MO2 of shortnose sturgeon increased significantly from 126.75 mg O2 h−1 kg−1 at 15 °C to 253.13 mg O2 h−1 kg−1 at 25 °C. The temperature coefficient (Q 10) values of the routine metabolic rates ranged between 1.61 and 2.46, with the largest Q 10 values occurring between 15 and 20 °C. The average post-exercise MO2 of all temperature groups increased to a peak value immediately following the exercise, with levels increasing about 2-fold among all temperature groups. The Q 10 values for post-exercise MO2 ranged from 1.21 to 2.12, with the highest difference occurring between 15 and 20 °C. Post-exercise MO2 values of shortnose sturgeon in different temperature groups all decreased exponentially and statistically returned to pre-exercise (resting) levels by 30 min at 15 and 20 °C and by 60 min at 25 °C. The aerobic metabolic scope (post-exercise maximal MO2-routine MO2) increased to a maximum value ∼156 mg O2 h−1 kg−1 at intermediate experimental temperatures (i.e., 20 °C) and then decreased as the temperature increased to 25 °C. However, this trend was not significant. The results suggest that juvenile shortnose sturgeon show flexibility in their ability to adapt to various temperature environments and in their responses to exhaustive exercise.
Short-term feed and light deprivation reduces voluntary activity but improves swimming performance in rainbow trout Oncorhynchus mykiss
Rainbow trout Oncorhynchus mykiss (~ 180 g, 16 °C and < 5 kg m−3) that were feed deprived and kept in total darkness showed a significant increase in critical swimming speed (U crit) between 1 and 12 days of deprivation (from 3.35 to 4.46 body length (BL) s−1) with no increase in maximum metabolic rate (MMR). They also showed a significant decrease in the estimated metabolic rate at 0 BL s−1 over 12 days which leads to a higher factorial aerobic metabolic scope at day 12 (9.38) compared to day 1 (6.54). Routine metabolic rates were also measured in ~ 90 g rainbow trout that were swimming freely in large circular respirometers at 16 °C. These showed decreasing consumption oxygen rates and reductions in the amount of oxygen consumed above standard metabolic rate (a proxy for spontaneous activity) over 12 days, though this happened significantly faster when they were kept in total darkness when compared to a 12:12-h light–dark (LD) photoperiod. Weight loss during this period was also significantly reduced in total darkness (3.33% compared to 4.98% total body weight over 12 days). Immunological assays did not reveal any consistent up- or downregulation of antipathogenic and antioxidant enzymes in the serum or skin mucus of rainbow trout between 1 and 12 days of feed and light deprivation. Overall, short periods of deprivation do not appear to significantly affect the performance of rainbow trout which appear to employ a behavioural energy-sparing strategy, albeit more so in darkness than under a 12:12-h LD regime.
Cost of tolerance: physiological consequences of evolved resistance to inhabit a polluted environment in teleost fish Fundulus heteroclitus
Anthropogenic stressors, including pollutants, are key evolutionary drivers. It is hypothesized that rapid evolution to anthropogenic changes may alter fundamental physiological processes (e.g., energy metabolism), compromising an organism's capacity to respond to additional stressors. The Elizabeth River (ER) Superfund site represents a "natural-experiment" to explore this hypothesis in several subpopulations of Atlantic killifish that have evolved a gradation of resistance to a ubiquitous pollutant-polycyclic aromatic hydrocarbons (PAH). We examined bioenergetic shifts and associated consequences in PAH-resistant killifish by integrating genomic, physiological, and modeling approaches. Population genomics data revealed that genomic regions encoding bioenergetic processes are under selection in PAH-adapted fish from the most contaminated ER site and ex vivo studies confirmed altered mitochondrial function in these fish. Further analyses extending to differentially PAH-resistant subpopulations showed organismal level bioenergetic shifts in ER fish that are associated with increased cost of living, decreased performance, and altered metabolic response to temperature stress-an indication of reduced thermal plasticity. A movement model predicted a higher energetic cost for PAH-resistant subpopulations when seeking an optimum habitat. Collectively, we demonstrate that pollution adaption and inhabiting contaminated environments may result in physiological shifts leading to compromised organismal capacity to respond to additional stressors.
The Effects of Crossbreeding and Low Fish Meal Diets on Growth-Related Traits in Chinook Salmon (Oncorhynchus tshawytscha)
Growth rate is the most important trait that can be manipulated to create more efficient aquaculture. Crossbreeding, where different populations are bred, has the potential to increase performance through release from inbreeding depression. I crossed a farm population of Chinook salmon (Oncorhynchus tshawytscha) with seven wild populations, then compared growth rate, feed conversion efficiency, swimming speed and metabolic rate between the crossbred and original farmed lines. Crossbreeding resulted in increased growth rates, but had no effect on the other traits. I next evaluated the feasibility of using a diet that replaced fish meal with corn gluten meal and poultry meal. The alternative diet had no effect on growth rate or survival, but led to increased fat content and decreased tissue pigmentation. My thesis supports using crossbreeding in salmon aquaculture to increase growth rate, but found a low fish meal diet was not viable due to its effects on tissue colour.
Resistance to polycyclic aromatic hydrocarbon toxicity and associated bioenergetic consequences in a population of Fundulus heteroclitus.
Several locations in the Elizabeth River, VA, USA are highly contaminated with polycyclic aromatic hydrocarbons (PAHs) due to the release of creosote mixtures from wood treatment facilities. Interestingly, some populations of Atlantic killifish (Fundulus heteroclitus) inhabiting the Elizabeth River (ER) are resistant to PAH-induced teratogenesis. However, evolutionary resistance to PAHs due to chronic PAH exposure is associated with reduced fitness and increased susceptibility to other environmental stressors in at least one PAH-resistant ER killifish population. More specifically, wild-caught and first generation PAH-resistant juvenile killifish have altered metabolic demands when compared to non-resistant fish. Herein, we investigated this association further by examining a previously under-studied population captured from the creosote-contaminated site Republic Creosoting (Rep). We assessed PAH toxicity and effects on energy metabolism in Rep killifish in comparison with killifish from the reference site Kings Creek (KC). Following exposures to simple and complex PAH mixtures, Rep killifish exhibited several phenotypes associated with PAH resistance including decreased incidences of developmental cardiovascular deformities and recalcitrant cytochrome P450 1A (CYP1A) activity. We evaluated bioenergetics in killifish embryos throughout development and found elevated basal oxygen consumption rates in Rep embryos relative to KC embryos. Furthermore, juvenile F1 Rep fish had significantly lower maximal metabolic rates and aerobic scopes than KC juveniles. These results suggest that populations of killifish that have adapted or evolved to withstand the toxicity associated with PAHs consequently have altered energetic metabolism or demands. Such consequences could result in an enhanced vulnerability to other environmental and anthropogenic stressors in PAH-resistant killifish.
Subtle physiological and morphological differences explain ecological success of sympatric congeners
Sympatric congeners with similar physiological and morphological characteristics may appear to overlap in niche space but respond to environmental change in different ways leading to population decline of one species while the other remains stable. Understanding why sympatric congeners vary in their ecological success can be challenging, but is particularly necessary given the magnitude of human‐induced environmental change among ecosystems. We propose that identifying a complex of subtle, interacting characters among congeners may be more effective in elucidating both historical coexistence and divergent ecological success in contemporary habitats compared to identifying just one apparent limiting similarity between species. Using this subtle difference hypothesis, we examined how metabolic rate associated with habitat use and internal and external morphology collectively influenced the ecological success of a common and a rare sturgeon species that differ dramatically in their conservation status due to environmental change. Multivariate analyses of gut morphology (e.g., intestine length) combined with respirometry on sand and gravel habitats were incorporated into a bioenergetics model to compare how the fishes responded to habitat change and food quality. Energetic tradeoffs induced by habitat type and underlying morphological differences led to different predicted growth rates. Compared with the more prevalent species, the rare and endangered fish needed to seek different habitats with less energetic costs and switch to foraging at a higher trophic level to persist. Our results corresponded to observed differences in ecological success between these species in the wild. Thus, subtle physiological and morphological differences may lead to dramatic differences in ecological success in contemporary habitats for species that are very similar ecologically.
Selection on the morphology–physiology‐performance nexus: Lessons from freshwater stickleback morphs
Conspecifics inhabiting divergent environments frequently differ in morphology, physiology, and performance, but the interrelationships amongst traits and with Darwinian fitness remains poorly understood. We investigated population differentiation in morphology, metabolic rate, and swimming performance in three‐spined sticklebacks ( Gasterosteus aculeatus L.), contrasting a marine/ancestral population with two distinct freshwater morphotypes derived from it: the “typical” low‐plated morph, and a unique “small‐plated” morph. We test the hypothesis that similar to plate loss in other freshwater populations, reduction in lateral plate size also evolved in response to selection. Additionally, we test how morphology, physiology, and performance have evolved in concert as a response to differences in selection between marine and freshwater environments. We raised pure‐bred second‐generation fish originating from three populations and quantified their lateral plate coverage, burst‐ and critical swimming speeds, as well as standard and active metabolic rates. Using a multivariate Q ST ‐ F ST framework, we detected signals of directional selection on metabolic physiology and lateral plate coverage, notably demonstrating that selection is responsible for the reduction in lateral plate coverage in a small‐plated stickleback population. We also uncovered signals of multivariate selection amongst all bivariate trait combinations except the two metrics of swimming performance. Divergence between the freshwater and marine populations exceeded neutral expectation in morphology and in most physiological and performance traits, indicating that adaptation to freshwater habitats has occurred, but through different combinations of traits in different populations. These results highlight both the complex interplay between morphology, physiology and performance in local adaptation, and a framework for their investigation.
Swimming performance of sauger (Sander canadensis) in relation to fish passage
A lack of information on the swimming abilities of sauger (Sander canadensis), a highly migratory species particularly sensitive to habitat fragmentation, may inhibit the design of effective passage structures for this species. Passage success, maximum ascent distances, and maximum sprint velocities of sauger were estimated in an open-channel flume over a range of water velocities (51, 78, and 92 cm·s −1 ) and temperatures (10.0, 14.3, and 18.3 °C) to assess swimming performance. Passage success was high (91%) over all test velocities, as was the maximum instantaneous burst velocity (219 cm·s −1 ). Water temperature and body size had little effect on swimming performance. Sauger transitioned from steady, sustained swimming to unsteady, burst–glide, or steady burst swimming at 97 cm·s −1. Sauger were capable of sustained sprints of 124 cm·s −1 over 15 s duration in a swim chamber. Results suggest passage structures with water velocities less than 97 cm·s −1 should provide high probability of successful passage of adult sauger, whereas structures with water velocities exceeding 219 cm·s −1 may be impassable.
Sustained impairment of respiratory function and swim performance following acute oil exposure in a coastal marine fish
Replacement of fishmeal with corn gluten meal in feeds for juvenile rainbow trout (Oncorhynchus mykiss) does not affect oxygen consumption during forced swimming
We compared oxygen consumption (MO2, mg/kg/h) of c. 80 g rainbow trout (Oncorhynchus mykiss) in an intermittent-flow swim respirometer at 15 °C. Before the tests the fish were grown in flow through tanks (15 °C) with either fishmeal (FM) or corn gluten meal (CGM) based diets (c. 52% protein) for a period of 3–4.5 months. Ten individuals from both treatment groups were fasted for 48 h before the swim test, which consisted of 18 loops of 210 s over three different periods: acclimation period (6 loops at 0.5 body lengths per s, BL/s), exercise period (8 loops at increased speed from 1 to 2.5 BL/s with recovery loops at 0.5 BL/s), and a recovery period (four loops at 0.5 BL/s). We did not observe significant differences in MO2 between the two groups at any of the three measurement periods (repeated measures-Anova). The maximum (mean ± SE) MO2 values, measured during the last exercise period at 2.5 BL/s, did not differ significantly between the treatments: 404 ± 18.7 mg/kg/h and 427 ± 50.6 mg/kg/h in FM and CGM groups, respectively. Our result supports an earlier finding that origin of the protein does not affect MO2 during swimming in salmonids. This is the first report of the effect of a plant protein on MO2 of a carnivorous fish during forced swimming, and these data lend support to further development of sustainable diets to replace fishmeal with plant proteins. Abbreviations: BLbody lengths CFcondition factor CGMcorn gluten meal FMfishmeal MO2oxygen consumption (mg/kg/h)
Energetic cost determines voluntary movement speed only in familiar environments.
Locomotor performance is closely related to fitness. However, in many ecological contexts, animals do not move at their maximal locomotor capacity, but adopt a voluntary speed that is lower than maximal. It is important to understand the mechanisms that underlie voluntary speed, because these determine movement patterns of animals across natural environments. We show that voluntary speed is a stable trait in zebrafish (Danio rerio), but there were pronounced differences between individuals in maximal sustained speed, voluntary speed and metabolic cost of locomotion. We accept the hypothesis that voluntary speed scales positively with maximal sustained swimming performance (Ucrit), but only in unfamiliar environments (1st minute in an open-field arena versus 10th minute) at high temperature (30°C). There was no significant effect of metabolic scope on Ucrit. Contrary to expectation, we rejected the hypothesis that voluntary speed decreases with increasing metabolic cost of movement, except in familiar spatial (after 10 min of exploration) and thermal (24°C but not 18 or 30°C) environments. The implications of these data are that the energetic costs of exploration and dispersal in novel environments are higher than those for movement within familiar home ranges.
Effects of size and sex on swimming performance and metabolism of invasive mosquitofish Gambusia holbrooki.
In freshwater ecosystems, abiotic factors such as flow regime and water quality are considered important predictors of ecosystem invasibility. The aim of this study was to investigate the critical swimming capacity and metabolism of the eastern mosquitofish, Gambusia holbrooki, focusing on sex and size effects, to evaluate the influence of water flow on its invasive success. Specimens of mosquitofish were captured from the Ter Vell lagoon (L'Estartit, north‐eastern Spain) in July 2014, and we measured the critical swimming speed ( U crit ) and oxygen consumption of individual fish (30 females and 30 males) using a mini swim tunnel. The mean U crit of this poeciliid fish was estimated at 14.11 cm·s −1 (range = 4.85–22.26), which is lower than that of many other fishes of similar size and confirms that this species is limnophilic and its invasive success might be partially explained by hydrologic alterations. However, the U crit and maximal metabolic rate vary markedly with fish size and sex, with males having much higher values for the same body mass, and thus probably being more resistant to strong water flows. Multiple regression models illustrate that multivariate analyses might increase the predictive power and understanding of swimming performance and metabolic traits, compared to results from conventional simple regressions.
Injury-induced ctgfa directs glial bridging and spinal cord regeneration in zebrafish.
Spinal cord regeneration in zebrafish Unlike humans, zebrafish can regenerate their spinal cord. Mokalled et al. identified a growth factor in zebrafish that helps this process (see the Perspective by Williams and He). The protein encoded by ctgfa ( connective tissue growth factor a ) is secreted after injury and encourages glial cells to form a bridge across the spinal lesion. Addition of this protein improved spinal cord repair in injured zebrafish. Science, this issue p. 630; see also p. 544
Performance improvement of IPMC flow sensors with a biologically-inspired cupula structure.
Ionic polymer-metal composites (IPMCs) have inherent underwater sensing and actuation properties. They can be used as sensors to collect flow information. Inspired by the hair-cell mediated receptor in the lateral line system of fish, the impact of a flexible, cupula-like structure on the performance of IPMC flow sensors is experimentally explored. The fabrication method to create a silicone-capped IPMC sensor is reported. Experiments are conducted to compare the sensing performance of the IPMC flow sensor before and after the PDMS coating under the periodic flow stimulus generated by a dipole source in still water and the laminar flow stimulus generated in a flow tank. Experimental results show that the performance of IPMC flow sensors is significantly improved under the stimulus of both periodic flow and laminar flow by the proposed silicone-capping.
Abiotic influences on bicarbonate use in the giant kelp, Macrocystis pyrifera, in the Monterey Bay.
In the Monterey Bay region of central California, the giant kelp Macrocystis pyrifera experiences broad fluctuations in wave forces, temperature, light availability, nutrient availability, and seawater carbonate chemistry, all of which may impact their productivity. In particular, current velocities and light intensity may strongly regulate the supply and demand of inorganic carbon (Ci) as substrates for photosynthesis. Macrocystis pyrifera can acquire and utilize both CO 2 and bicarbonate ( HCO 3 − ) as Ci substrates for photosynthesis and growth. Given the variability in carbon delivery (due to current velocities and varying [ DIC ]) and demand (in the form of saturating irradiance), we hypothesized that the proportion of CO 2 and bicarbonate utilized is not constant for M. pyrifera, but a variable function of their fluctuating environment. We further hypothesized that populations acclimated to different wave exposure and irradiance habitats would display different patterns of bicarbonate uptake. To test these hypotheses, we carried out oxygen evolution trials in the laboratory to measure the proportion of bicarbonate utilized by M. pyrifera via external CA under an orthogonal cross of velocity, irradiance, and acclimation treatments. Our Monterey Bay populations of M. pyrifera exhibited proportionally higher external bicarbonate utilization in high irradiance and high flow velocity conditions than in sub‐saturating irradiance or low flow velocity conditions. However, there was no significant difference in proportional bicarbonate use between deep blades and canopy blades, nor between individuals from wave‐exposed versus wave‐protected sites. This study contributes a new field‐oriented perspective on the abiotic controls of carbon utilization physiology in macroalgae.
Measurement and relevance of maximum metabolic rate in fishes.
There is good evidence that natural selection drives the evolution of locomotor performance, but the processes that generate among individual variation in locomotion, the substrate upon which selection acts, are relatively poorly understood. We measured prolonged swimming performance, Ucrit, and morphology in a large cohort (n=461) of wildtype zebrafish, Danio rerio, at ∼6 months and again at ∼9 months. Using mixed model analyses to estimate repeatability as the intraclass correlation coefficient, we determined that Ucrit was significantly repeatable (r = 0.55; 95% CI: 0.45 -0.64). Performance differences between the sexes (males 12% faster than females) and changes with age (decreasing 0.07% per day) both contributed to variation in Ucrit and, therefore, the repeatability estimate. Accounting for mean differences between sexes within the model decreased the estimate of Ucrit repeatability to 21% below the naïve estimate, while fitting age in the models increased the estimate to 14% above the naïve estimate. Greater consideration of factors such as age and sex is therefore necessary for the interpretation of performance repeatability in wild populations. Body shape significantly predicted Ucrit in both sexes in both assays, with the morphology – performance relationship significantly repeatable at the population level. However, morphology was more strongly predicative of performance in older fish, suggesting a change in the contribution of morphology relative to other factors such as physiology and behaviour. The morphology – performance relationship changed with age to a greater extent in males than females.
Refuging rainbow trout selectively exploit flows behind tandem cylinders.
Fishes may exploit environmental vortices to save in the cost of locomotion. Previous work has investigated fish refuging behind a single cylinder in current, a behavior termed the Kármán gait. However, current-swept habitats often contain aggregations of physical objects, and it is unclear how the complex hydrodynamics shed from multiple structures affect refuging in fish. To begin to address this, we investigated how the flow fields produced by two D -shaped cylinders arranged in tandem affect the ability of rainbow trout ( Oncorhynchus mykiss ) to Kármán gait. We altered the spacing of the two cylinders from l/D of 0.7 to 2.7 (where l =downstream spacing of cylinders and D =cylinder diameter) and recorded the kinematics of trout swimming behind the cylinders with high-speed video at Re =10,000–55,000. Digital particle image velocimetry showed that increasing l/D decreased the strength of the vortex street by an average of 53% and decreased the frequency that vortices were shed by ∼20% for all speeds. Trout were able to Kármán gait behind all cylinder treatments despite these differences in the downstream wake; however, they Kármán gaited over twice as often behind closely spaced cylinders ( l/D =0.7, 1.1, and 1.5). Computational fluid dynamics simulations show that when cylinders are widely spaced, the upstream cylinder generates a vortex street that interacts destructively with the downstream cylinder, producing weaker, more widely spaced and less-organized vortices that discourage Kármán gaiting. These findings are poised to help predict when fish may seek refuge in natural habitats based on the position and arrangement of stationary objects. KEY WORDS: Vortex street, Oncorhynchus mykiss, Kármán gait, Flow visualization, DPIV, CFD, Turbulence, Swimming
The effects of steady swimming on fish escape performance.
Escape maneuvers are essential to the survival and fitness of many animals. Escapes are frequently initiated when an animal is already in motion. This may introduce constraints that alter the escape performance. In fish, escape maneuvers and steady, body caudal fin (BCF) swimming are driven by distinct patterns of curvature of the body axis. Pre-existing muscle activity may therefore delay or diminish a response. To quantify the performance consequences of escaping in flow, escape behavior was examined in bluegill sunfish (Lepomis macrochirus) in both still-water and during steady swimming. Escapes executed during swimming were kinematically less variable than those made in still-water. Swimming escapes also had increased response latencies and lower peak velocities and accelerations than those made in still-water. Performance was also lower for escapes made up rather than down-stream, and a preference for down-stream escapes may be associated with maximizing performance. The constraints imposed by pre-existing motion and flow, therefore, have the potential to shape predator–prey interactions under field conditions by shifting the optimal strategies for both predators and prey.
Modeling GATAD1-Associated Dilated Cardiomyopathy in Adult Zebrafish.
Animal models have played a critical role in validating human dilated cardiomyopathy (DCM) genes, particularly those that implicate novel mechanisms for heart failure. However, the disease phenotype may be delayed due to age-dependent penetrance. For this reason, we generated an adult zebrafish model, which is a simpler vertebrate model with higher throughput than rodents. Specifically, we studied the zebrafish homologue of GATAD1, a recently identified gene for adult-onset autosomal recessive DCM. We showed cardiac expression of gatad1 transcripts, by whole mount in situ hybridization in zebrafish embryos, and demonstrated nuclear and sarcomeric I-band subcellular localization of Gatad1 protein in cardiomyocytes, by injecting a Tol2 plasmid encoding fluorescently-tagged Gatad1. We next generated gatad1 knock-out fish lines by TALEN technology and a transgenic fish line that expresses the human DCM GATAD1-S102P mutation in cardiomyocytes. Under stress conditions, longitudinal studies uncovered heart failure (HF)-like phenotypes in stable KO mutants and a tendency toward HF phenotypes in transgenic lines. Based on these efforts of studying a gene-based inherited cardiomyopathy model, we discuss the strengths and bottlenecks of adult zebrafish as a new vertebrate model for assessing candidate cardiomyopathy genes.
Divergent natural selection promotes immigrant inviability at early and late stages of evolutionary divergence.
Natural selection's role in speciation has been of fundamental importance since Darwin first outlined his theory. Recently, work has focused on understanding how selection drives trait divergence, and subsequently reproductive isolation. "Immigrant inviability," a barrier that arises from selection against immigrants in their nonnative environment, appears to be of particular importance. Although immigrant inviability is likely ubiquitous, we know relatively little about how selection acts on traits to drive immigrant inviability, and how important immigrant inviability is at early-versus-late stages of divergence. We present a study evaluating the role of predation in the evolution of immigrant inviability in recently diverged population pairs and a well-established species pair of Brachyrhaphis fishes. We evaluate performance in a high-predation environment by assessing survival in the presence of a predator, and swimming endurance in a low-predation environment. We find strong signatures of local adaptation and immigrant inviability of roughly the same magnitude both early and late in divergence. We find remarkably conserved selection for burst-speed swimming (important in predator evasion), and selection for increased size in low-predation environments. Our results highlight the consistency with which selection acts during speciation, and suggest that similar factors might promote initial population differentiation and maintain differentiation at late stages of divergence.
A Potential Cost of Long Genitalia in Male Guppies: the Effects of Current Speed on Reproductive Behaviour.
In the fish family Poeciliidae, male genitalia, the gonopodia, are remarkably diverse across species; however, we still do not have a good understanding of the evolutionary processes promoting this diversity. For one trait, gonopodium length, several studies support a role for sexual conflict in selection for longer gonopodia. However, genital elongation may come at a cost of reduced locomotor abilities (e.g. resulting from greater drag and resistance). In this study, we were interested in the potential role of natural selection on the evolution of gonopodium length in poeciliids. Specifically, we asked whether a greater genital length impedes male reproductive behaviours at higher flow rates in the Trinidadian guppy, Poecilia reticulata. Using a flow chamber, males were placed with females in low‐ and high‐flow regimes and reproductive behaviours were measured. We did not find evidence for a cost of bearing a longer gonopodium at high flow. However, males did alter their mating tactics in response to current flow. We discuss the implications of our findings, in the light of habitat selection, on the forms of selection operating on gonopodium length and the mating interactions between the sexes in poeciliids.
Sensitivity of lake sturgeon (Acipenser fulvescens) early life stages to 2,3,7,8-tetrachlorodibenzo-P-dioxin and 3,3Œ,4,4Œ,5-pentachlorobiphenyl.
The aquatic food web of the Great Lakes has been contaminated with polychlorinated biphenyls (PCBs) since the mid-20th century. Threats of PCB exposures to long-lived species of fish, such as lake sturgeon (Acipenser fulvescens), have been uncertain because of a lack of information on the relative sensitivity of the species. The objective of the present study was to evaluate the sensitivity of early–life stage lake sturgeon to 3,3′,4,4′,5-pentachlorobiphenyl (PCB-126) or 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exposure. Mortality, growth, morphological and tissue pathologies, swimming performance, and activity levels were used as assessment endpoints. Pericardial and yolk sac edema, tubular heart, yolk sac hemorrhaging, and small size were the most commonly observed pathologies in both TCDD and PCB-126 exposures, beginning as early as 4 d postfertilization, with many of these pathologies occurring in a dose-dependent manner. Median lethal doses for PCB-126 and TCDD in lake sturgeon were 5.4 ng/g egg (95% confidence interval, 3.9–7.4 ng/g egg) and 0.61 ng/g egg (0.47–0.82 ng/g egg), respectively. The resulting relative potency factor for PCB-126 (0.11) was greater than the World Health Organization estimate for fish (toxic equivalency factor = 0.005), suggesting that current risk assessments may underestimate PCB toxicity toward lake sturgeon. Swimming activity and endurance were reduced in lake sturgeon survivors from the median lethal doses at 60 d postfertilization. Threshold and median toxicity values indicate that lake sturgeon, like other Acipenser species, are more sensitive to PCB and TCDD than the other genus of sturgeon, Scaphirhynchus, found in North America. Indeed, lake sturgeon populations in the Great Lakes and elsewhere are susceptible to PCB/TCDD-induced developmental toxicity in embryos and reductions in swimming performance. Environ Toxicol Chem 2017;36:988–998. Published 2016 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.
Effects of pyrolytic and petrogenic polycyclicaromatic hydrocarbons on swimming and metabolic performance of zebrafish contaminated by ingestion.
Depending on their origins, polycyclic aromatic hydrocarbons (PAH) are characterized by different chemical properties. Petrogenic PAH (e.g. from fossil fuels) and pyrolytic PAH (e.g. those produced by incineration processes) are therefore expected to affect organisms differently. The impact of trophic exposure to these PAH was investigated on swimming and metabolic performance of zebrafish Danio rerio. Two-month-old juveniles and six-month-old adults were individually challenged following a swimming step protocol. While pyrolytic exposure did not affect fish whatever the duration of exposure, it appeared that petrogenic PAH impaired adults' performance. Indeed, the active metabolic rate in petrogenic PAH-contaminated adults was significantly reduced by 35%, and critical swimming speed by 26.5%. This was associated with cardiac abnormalities, which are expected to contribute to the reduction of oxygen transport, particularly during intensive effort. These results may be due to the different composition and toxicity of PAH mixtures.
Thermal acclimation to cold alters myosin content and contractile properties of rainbow smelt, Osmerus mordax, redmuscle.
Acceleration telemetry transmitters offer the opportunity to estimate the cost of behaviours in free-ranging fishes, but a methodology to translate acceleration data into metabolic equivalents is still needed. This study extends previous calibration studies, explores how well tail-beat frequency transmitters fulfill their role, and presents a procedure to convert acceleration data into metabolic cost within a framework consistent with traditional fish bioenergetics models and thus facilitates comparisons of energetic costs between natural fish populations. These objectives were achieved by comparing data from lake trout (Salvelinus namaycush) in a laboratory setting with data from three natural populations. In the laboratory, tail-beat frequency, acceleration values, and oxygen consumption increased progressively with swimming speed. In the wild, individual swimming speeds estimated from positional telemetry were consistently underestimated by, but positively related to, transmitter-based acceleration values. The proposed rationale to estimate metabolic rate from acceleration data accounts for variation in fish mass and environmental temperature. We demonstrated how this novel method permits comparison of metabolic costs associated with the levels of activity typical of lake trout living in two different lakes.
Repeated evolution of local adaptation in swimming performance: population-level trade-offs between burst and endurance swimming in Brachyrhaphis freshwater fish.
Specialization is fundamentally important in biology because specialized traits allow species to expand into new environments, in turn promoting population differentiation and speciation. Specialization often results in trade-offs between traits that maximize fitness in one environment but not others. Despite the ubiquity of trade-offs, we know relatively little about how consistently trade-offs evolve between populations when multiple sets of populations experience similarly divergent selective regimes. In the present study, we report a case study on Brachyrhaphis fishes from different predation environments. We evaluate apparent within/between population trade-offs in burst-speed and endurance at two levels of evolutionary diversification: high- and low-predation populations of Brachyrhaphis rhabdophora, and sister species Brachyrhaphis roseni and Brachyrhaphis terrabensis, which occur in high- and low-predation environments, respectively. Populations of Brachyrhaphis experiencing different predation regimes consistently evolved swimming specializations indicative of a trade-off between two swimming forms that are likely highly adaptive in the environment in which they occur. We show that populations have become similarly locally adapted at both levels of diversification, suggesting that swimming specialization has evolved rather rapidly and persisted post-speciation. Our findings provide valuable insight into how local adaptation evolves at different stages of evolutionary divergence.
The use of acoustic acceleration transmitter tags for monitoring of Atlantic salmon swimming activity in recirculating aquaculture systems (RAS).
We designed two environmentally relevant thermal cycling regimes using monitoring data from an Atlantic salmon (Salmo salar) river to determine whether exposure to prior diel cycles stimulated protective mechanisms (e.g., heat hardening) and (or) resulted in physiological and cellular stress. Wild fish were exposed to 3 days of diel cycling in the lab and then exposed to an acute thermal challenge near their upper reported critical temperature. We measured routine metabolic rate across the time course as well as indicators of physiological status (e.g., plasma glucose and osmolality) and cellular stress (e.g., heat shock protein 70). We observed that thermal cycling altered physiological and cellular responses, compared with an acute heat shock, but saw no differences between cycling regimes. Unique temperature regime and tissue-specific responses were observed in heat shock protein induction, metabolites, haematology, and osmotic indicators. Routine metabolic rate was not affected by the thermal cycling and increased according to Q 10 predictions. While we report unique physiological and cellular responses among all treatment groups, we did not observe a clear indication of a heat hardening response.
Molecular, behavioral, and performance responses of juvenile largemouth bass acclimated to an elevated carbon dioxide environment.
Aquatic hypercarbia, either naturally occurring or anthropogenically induced, can have extensive impacts on aquatic environments and resident organisms. While the impact of acute hypercarbia exposure on the behavior and physiology of fishes has been well studied, relatively little work has examined the physiological impact and acclimation capacity of fishes to chronic hypercarbia. To better understand the impacts of prolonged hypercarbia exposure, largemouth bass were held at ambient CO2 (13 mg L−1) and elevated CO2 (31 mg L−1; ≈21,000 µatm) for 58 days. Following this acclimation period, fish were subjected to three separate, yet complementary, experiments: (1) acute hypercarbia challenge of 120 mg L−1 CO2 for 1 h to quantify physiological and molecular responses; (2) hypercarbia avoidance challenge to compare CO2 agitation and avoidance responses; and (3) swim performance challenge to quantify burst swimming performance. Acclimation to 31 mg L−1 CO2 resulted in a significant constitutive upregulation of c-fos expression in erythrocytes, combined with significant constitutive expression of hsp70 in both gill and erythrocytes, relative to controls. Largemouth bass acclimated to elevated CO2 also had a reduced glucose response (relative to controls) following an acute CO2 exposure, indicating a reduced stress response to CO2 stressors. In addition, largemouth bass acclimated to elevated CO2 conditions required 50 % higher CO2 concentrations to illicit agitation behaviors and displayed prolonged burst swimming abilities in high CO2 environments relative to controls. Together, results demonstrate that largemouth bass exposed to chronic hypercarbia may possess a physiological advantage during periods of elevated CO2 relative to naïve fish, which may permit increased performance in hypercarbia.
Effects of thermal increase on aerobic capacity and swim performance in a tropical inland fish.
Hybridization between introduced and native fauna is a risk to native species and may threaten the long‐term persistence of numerous taxa. Rainbow Trout Oncorhynchus mykiss has been one of the most widely introduced species around the globe and often hybridizes with native Cutthroat Trout O. clarkii in the Rocky Mountains. Previous work has shown that hybridization negatively affects reproductive success, but identification of the traits contributing to that reduction has been elusive. In this study, we used a combination of field and laboratory techniques to assess how hybridization with Rainbow Trout affects seven traits during several stages of Westslope Cutthroat Trout development: embryonic survival, ova size, ova energy concentration, sperm motility, juvenile weight, juvenile survival, and burst swimming endurance. Rainbow Trout admixture was correlated with an increase in embryonic survival and ova energy concentration but with a decrease in juvenile weight and burst swimming endurance. These correlations differed from previously observed patterns of reproductive success and likely do not explain the declines in reproductive success associated with admixture. Future investigation of additional, unstudied traits and the use of different environments may shed light on the traits responsible for reproductive success in admixed Cutthroat Trout.
Tissue Bioenergetics Analysis Reveals Identical Metabolic Allometric Scaling for Teleost Hearts and Whole Organisms.
Organismal metabolic rate, a fundamental metric in biology, demonstrates an allometric scaling relationship with body size. Fractal-like vascular distribution networks of biological systems are proposed to underlie metabolic rate allometric scaling laws from individual organisms to cells, mitochondria, and enzymes. Tissue-specific metabolic scaling is notably absent from this paradigm. In the current study, metabolic scaling relationships of hearts and brains with body size were examined by improving on a high-throughput whole-organ oxygen consumption rate (OCR) analysis method in five biomedically and environmentally relevant teleost model species. Tissue-specific metabolic scaling was compared with organismal routine metabolism (RMO2), which was measured using whole organismal respirometry. Basal heart OCR and organismal RMO2 scaled identically with body mass in a species-specific fashion across all five species tested. However, organismal maximum metabolic rates (MMO2) and pharmacologically-induced maximum cardiac metabolic rates in zebrafish Danio rerio did not show a similar relationship with body mass. Brain metabolic rates did not scale with body size. The identical allometric scaling of heart and organismal metabolic rates with body size suggests that hearts, the power generator of an organism’s vascular distribution network, might be crucial in determining teleost metabolic rate scaling under routine conditions. Furthermore, these findings indicate the possibility of measuring heart OCR utilizing the high-throughput approach presented here as a proxy for organismal metabolic rate—a useful metric in characterizing organismal fitness. In addition to heart and brain OCR, the current approach was also used to measure whole liver OCR, partition cardiac mitochondrial bioenergetic parameters using pharmacological agents, and estimate heart and brain glycolytic rates. This high-throughput whole-organ bioenergetic analysis method has important applications in toxicology, evolutionary physiology, and biomedical sciences, particularly in the context of investigating pathogenesis of mitochondrial diseases.
The muscle dwelling myxozoan, Kudoa inornata, enhances swimming performance in the spotted seatrout, Cynoscion nebulosus.
Parasites usurp host resources and, as a consequence, enhance their transmission and increase their fitness while reducing the fitness of their host. Performance capacity is a key predictor of fitness. Thus, the effects of parasites on host fitness may often be mediated by alteration of host performance. We tested the effect of the skeletal muscle dwelling myxozoan, Kudoa inornata, on the swimming performance in spotted seatrout, Cynoscion nebulosus. We predicted greater infection would result in reduced swimming performance. Unexpectedly, increasing density of K. inornata myxospores in seatrout skeletal muscle was related to increased fish swimming performance. The experiment was repeated and confirmed these unexpected results. The mechanisms underlying enhanced performance of an infected host are not understood, but their occurrence emphasizes the role of parasites as selective pressures on host evolution.
Exposure to Deepwater Horizon weathered crude oil increases routine metabolic demand in chub mackerel, Scomber japonicus.
Prolonged and high‐speed swimming performance measurements were used to explore the swimming abilities of two species of estuarine fishes, the mummichog Fundulus heteroclitus and the striped killifish Fundulus majalis, under different salinities. Critical swimming performance was significantly higher for F. majalis in high salinity than in low salinity, but no difference was observed in brief constant acceleration swimming trials in this species; however, the swimming performance of F. heteroclitus was not significantly affected by salinity changes, indicating that this species is well adapted to regular estuarine salinity oscillations. Fundulus majalis displayed higher swimming speeds than F. heteroclitus in both high and low salinities, and while this cannot be explained by their respective salinity preferences, the specific habitat preferences of F. majalis for sandy subtidal habitats and F. heteroclitus for vegetated marshes could explain the better swimming performance of F. majalis.
Sexually dimorphic morphology and swimming performance relationships in wild]type zebrafish Danio rerio.
This study compared prolonged swimming performance ( U crit ) between male and female Danio rerio, and characterized how body shape was associated with this performance measure in each sex. When swimming in small ( n = 6) mixed‐sex groups at 28° C, males swam, on average, over 10 cm s −1 faster than females despite being significantly smaller. Body shape was sexually dimorphic, with males and females exhibiting small, but statistically significant differences in most aspects of body shape. Body shape explained 18 and 43% of the variation in U crit among males and females. In general, effects of body shape on swimming performance appeared to be sex limited, whereby different aspects of body shape affected performance in each sex, although the contribution of the distance between pelvic and anal fins to swimming performance was weakly sexually antagonistic.
In their natural environment, fish must swim stably through unsteady flows and vortices, including vertical vortices, typically shed by posts in a flow, horizontal cross-flow vortices, often produced by a step or a waterfall in a stream, and streamwise vortices, where the axis of rotation is aligned with the direction of the flow. Streamwise vortices are commonly shed by bluff bodies in streams and by ships' propellers and axial turbines, but we know little about their effects on fish. Here, we describe how bluegill sunfish use more energy and are destabilized more often in flow with strong streamwise vorticity. The vortices were created inside a sealed flow tank by an array of four turbines with similar diameter to the experimental fish. We measured oxygen consumption for seven sunfish swimming at 1.5 body lengths (BL) s−1 with the turbines rotating at 2 Hz and with the turbines off (control). Simultaneously, we filmed the fish ventrally and recorded the fraction of time spent maneuvering side-to-side and accelerating forward. Separately, we also recorded lateral and ventral video for a combination of swimming speeds (0.5, 1.5 and 2.5 BL s−1) and turbine speeds (0, 1, 2 and 3 Hz), immediately after turning the turbines on and 10 min later to test for accommodation. Bluegill sunfish are negatively affected by streamwise vorticity. Spills (loss of heading), maneuvers and accelerations were more frequent when the turbines were on than in the control treatment. These unsteady behaviors, particularly acceleration, correlated with an increase in oxygen consumption in the vortex flow. Bluegill sunfish are generally fast to recover from roll perturbations and do so by moving their pectoral fins. The frequency of spills decreased after the turbines had run for 10 min, but was still markedly higher than in the control, showing that fish partially adapt to streamwise vorticity, but not completely. Coping with streamwise vorticity may be an important energetic cost for stream fishes or migratory fishes.
Pushing the limits of glucose kinetics: how rainbow trout cope with a carbohydrate overload.
Rainbow trout are generally considered as poor glucoregulators. To evaluate this statement, exogenous glucose was administered to chronically hyperglycemic fish at twice the endogenous rate of hepatic production, and their ability to modulate glucose fluxes was tested. Our goals were to determine: (1) whether hyperglycemic fish maintain higher glucose fluxes than normal; (2) whether they can lower hepatic production (Ra glucose) or stimulate disposal (Rd glucose) to cope with a carbohydrate overload; and (3) an estimate of the relative importance of glucose as an oxidative fuel. Results show that hyperglycemic trout sustain elevated baseline Ra and Rd glucose of 10.6±0.1 µmol kg−1 min−1 (or 30% above normal). If 50% of Rd was oxidized as in mammals, glucose could account from 36 to 100% of metabolic rate when exogenous glucose is supplied. In response to exogenous glucose, rainbow trout can completely suppress hepatic glucose production and increase disposal by 2.6-fold, even with chronically elevated baseline fluxes. Such large changes in fluxes limit the increase in blood glucose to 2.5-fold and are probably mediated by the effects of insulin on glucose transporters 2 and 4 and on key enzymes of carbohydrate metabolism. Without this strong and rapid modulation of glucose kinetics, glycemia would rise 4 times faster to reach dangerous levels exceeding 100 mmol l−1. Such responses are typical of mammals, but rather unexpected for an ectotherm. The impressive plasticity of glucose kinetics demonstrated here suggests that trout have a much better glucoregulatory capacity than usually portrayed in the literature.
Nrg1 is an injury-induced cardiomyocyte mitogen for the endogenous heart regeneration program in zebrafish.
Heart regeneration is limited in adult mammals but occurs naturally in adult zebrafish through the activation of cardiomyocyte division. Several components of the cardiac injury microenvironment have been identified, yet no factor on its own is known to stimulate overt myocardial hyperplasia in a mature, uninjured animal. In this study, we find evidence that Neuregulin1 (Nrg1), previously shown to have mitogenic effects on mammalian cardiomyocytes, is sharply induced in perivascular cells after injury to the adult zebrafish heart. Inhibition of Erbb2, an Nrg1 co-receptor, disrupts cardiomyocyte proliferation in response to injury, whereas myocardial Nrg1 overexpression enhances this proliferation. In uninjured zebrafish, the reactivation of Nrg1 expression induces cardiomyocyte dedifferentiation, overt muscle hyperplasia, epicardial activation, increased vascularization, and causes cardiomegaly through persistent addition of wall myocardium. Our findings identify Nrg1 as a potent, induced mitogen for the endogenous adult heart regeneration program. https://doi.org/10.7554/eLife.05871.001
A tough egg to crack: recreational boats as vectors for invasive goby eggs and transdisciplinary management approaches.
Temperature has pervasive effects on physiological processes and is critical in setting species distribution limits. Since invading Australia, cane toads have spread rapidly across low latitudes, but slowly into higher latitudes. Low temperature is the likely factor limiting high-latitude advancement. Several previous attempts have been made to predict future cane toad distributions in Australia, but understanding the potential contribution of phenotypic plasticity and adaptation to future range expansion remains challenging. Previous research demonstrates the considerable thermal metabolic plasticity of the cane toad, but suggests limited thermal plasticity of locomotor performance. Additionally, the oxygen-limited thermal tolerance hypothesis predicts that reduced aerobic scope sets thermal limits for ectotherm performance. Metabolic plasticity, locomotor performance and aerobic scope are therefore predicted targets of natural selection as cane toads invade colder regions. We measured these traits at temperatures of 10, 15, 22.5 and 30°C in low- and high-latitude toads acclimated to 15 and 30°C, to test the hypothesis that cane toads have adapted to cooler temperatures. High-latitude toads show increased metabolic plasticity and higher resting metabolic rates at lower temperatures. Burst locomotor performance was worse for high-latitude toads. Other traits showed no regional differences. We conclude that increased metabolic plasticity may facilitate invasion into higher latitudes by maintaining critical physiological functions at lower temperatures.
Movement patterns and dispersal potential of Pecos bluntnose shiner (Notropis simus pecosensis) revealed using otolith microchemistry
Natal origin and dispersal potential of the federally threatened Pecos bluntnose shiner (Notropis simus pecosensis) were successfully characterized using otolith microchemistry and swimming performance trials. Strontium isotope ratios ( 87 Sr: 86 Sr) of otoliths within the resident plains killifish (Fundulus zebrinus) were successfully used as a surrogate for strontium isotope ratios in water and revealed three isotopically distinct reaches throughout 297 km of the Pecos River, New Mexico, USA. Two different life history movement patterns were revealed in Pecos bluntnose shiner. Eggs and fry were either retained in upper river reaches or passively dispersed downriver followed by upriver movement during the first year of life, with some fish achieving a minimum movement of 56 km. Swimming ability of Pecos bluntnose shiner confirmed upper critical swimming speeds (U crit ) as high as 43.8 cm·s −1 and 20.6 body lengths·s −1 in 30 days posthatch fish. Strong swimming ability early in life supports our observations of upriver movement using otolith microchemistry and confirms movement patterns that were previously unknown for the species. Understanding patterns of dispersal of this and other small-bodied fishes using otolith microchemistry may help redirect conservation and management efforts for Great Plains fishes.
The effects of chronic cadmium exposure on repeat swimming performance and anaerobic metabolism in brown trout (Salmo trutta) and lake whitefish (Coregonus clupeaformis).
At the edge of the thermal window: effects of elevated temperature on the resting metabolism, hypoxia tolerance and upper critical thermal limit of a widespread African cichlid.
Tropical inland fishes are predicted to be especially vulnerable to thermal stress because they experience small temperature fluctuations that may select for narrow thermal windows. In this study, we measured resting metabolic rate (RMR), critical oxygen tension (P crit) and critical thermal maximum (CTMax) of the widespread African cichlid (Pseudocrenilabrus multicolor victoriae) in response to short-term acclimation to temperatures within and above their natural thermal range. Pseudocrenilabrus multicolor collected in Lake Kayanja, Uganda, a population living near the upper thermal range of the species, were acclimated to 23, 26, 29 and 32°C for 3 days directly after capture, and RMR and P crit were then quantified. In a second group of P. multicolor from the same population, CTMax and the thermal onset of agitation were determined for fish acclimated to 26, 29 and 32°C for 7 days. Both RMR and P crit were significantly higher in fish acclimated to 32°C, indicating decreased tolerance to hypoxia and increased metabolic requirements at temperatures only slightly (∼1°C) above their natural thermal range. The CTMax increased with acclimation temperature, indicating some degree of thermal compensation induced by short-term exposure to higher temperatures. However, agitation temperature (likely to represent an avoidance response to increased temperature during CTMax trials) showed no increase with acclimation temperature. Overall, the results of this study demonstrate that P. multicolor is able to maintain its RMR and P crit across the range of temperatures characteristic of its natural habitat, but incurs a higher cost of resting metabolism and reduced hypoxia tolerance at temperatures slightly above its present range.
Vulnerability of individual fish to capture by trawling is influenced by capacity for anaerobic metabolism.
The harvest of animals by humans may constitute one of the strongest evolutionary forces affecting wild populations. Vulnerability to harvest varies among individuals within species according to behavioural phenotypes, but we lack fundamental information regarding the physiological mechanisms underlying harvest-induced selection. It is unknown, for example, what physiological traits make some individual fish more susceptible to capture by commercial fisheries. Active fishing methods such as trawling pursue fish during harvest attempts, causing fish to use both aerobic steady-state swimming and anaerobic burst-type swimming to evade capture. Using simulated trawling procedures with schools of wild minnows Phoxinus phoxinus, we investigate two key questions to the study of fisheries-induced evolution that have been impossible to address using large-scale trawls: (i) are some individuals within a fish shoal consistently more susceptible to capture by trawling than others?; and (ii) if so, is this related to individual differences in swimming performance and metabolism? Results provide the first evidence of repeatable variation in susceptibility to trawling that is strongly related to anaerobic capacity and swimming ability. Maximum aerobic swim speed was also negatively correlated with vulnerability to trawling. Standard metabolic rate was highest among fish that were least vulnerable to trawling, but this relationship probably arose through correlations with anaerobic capacity. These results indicate that vulnerability to trawling is linked to anaerobic swimming performance and metabolic demand, drawing parallels with factors influencing susceptibility to natural predators. Selection on these traits by fisheries could induce shifts in the fundamental physiological makeup and function of descendent populations.
Physiological tradeoffs may underlie the evolution of hypoxia tolerance and exercise performance in sunfish (Centrarchidae).
Tradeoffs between hypoxia tolerance and aerobic exercise performance appear to exist in some fish taxa, even though both of these traits are often associated with a high O2 transport capacity. We examined the physiological basis for this potential tradeoff in four species of sunfish from the family Centrarchidae. Hypoxia tolerance was greatest in rock bass, intermediate in pumpkinseed and bluegill, and lowest in largemouth bass, based on measurements of critical O2 tension (Pcrit) and O2 tension at loss of equilibrium (PO2 at LOE). Consistent with there being a tradeoff between hypoxia tolerance and aerobic exercise capacity, the least hypoxia-tolerant species had the highest critical swimming speed (Ucrit) during normoxia and suffered the greatest decrease in Ucrit in hypoxia. There was also a positive correlation between Ucrit in normoxia and PO2 at LOE, which remained significant after accounting for phylogeny using phylogenetically independent contrasts. Several sub-organismal traits appeared to contribute to both hypoxia tolerance and aerobic exercise capacity (reflected by traits that were highest in both rock bass and largemouth bass), such as the gas-exchange surface area of the gills, the pH sensitivity of haemoglobin-O2 affinity, and the activities of lactate dehydrogenase and the gluconeogenic enzyme phosphoenolpyruvate carboxykinase in the liver. Some other sub-organismal traits were uniquely associated with either hypoxia tolerance (low sensitivity of haemoglobin-O2 affinity to organic phosphates, high pyruvate kinase and lactate dehydrogenase activities in the heart) or aerobic exercise capacity (capillarity and fibre size of the axial swimming muscle). Therefore, the cumulative influence of a variety of respiratory and metabolic traits can result in physiological tradeoffs associated with the evolution of hypoxia tolerance and aerobic exercise performance in fish.
Male sexually coercive behaviour drives increased swimming efficiency in female guppies.
Sexual coercion of females by males is widespread across sexually reproducing species. It stems from a conflict of interest over reproduction and exerts selective pressure on both sexes. For females, there is often a significant energetic cost of exposure to male sexually coercive behaviours. Our understanding of the efficiency of female resistance to male sexually coercive behaviour is key to understanding how sexual conflict contributes to population level dynamics and ultimately to the evolution of sexually antagonistic traits. Overlooked within this context are plastic physiological responses of traits within the lifetime of females that could moderate the energetic cost imposed by coercive males. Here, we examined whether conflict over the frequency and timing of mating between male and female guppies Poecilia reticulata can induce changes in swimming performance and aerobic capacity in females as they work to escape harassment by males. Females exposed to higher levels of harassment over a 5‐month period used less oxygen to swim at a given speed, but displayed no difference in resting metabolic rate, maximal metabolic rate, maximal sustained swimming speed or aerobic scope compared to females receiving lower levels of harassment. The observed increase in swimming efficiency is at least partially related to differences in swimming mechanics, likely brought on by a training effect of increased activity, as highly harassed females spent less time performing pectoral fin‐assisted swimming. Sexual conflict results in sexually antagonistic traits that impose a variety of costs, but our results show that females can reduce costs through phenotypic plasticity. It is also possible that phenotypic plasticity in swimming physiology or mechanics in response to sexual coercion can potentially give females more control over matings and affect which male traits are under selection.
Forced sustained swimming exercise at optimal speed enhances growth of juvenile yellowtail kingfish (Seriola lalandi).
Swimming exercise at optimal speed may optimize growth performance of yellowtail kingfish in a recirculating aquaculture system. Therefore, optimal swimming speeds (Uopt in m s-1 or body lengths s-1, BL s-1) were assessed and then applied to determine the effects of long-term forced and sustained swimming at Uopt on growth performance of juvenile yellowtail kingfish. Uopt was quantified in Blazka-type swim-tunnels for 145 mm, 206 mm and 311 mm juveniles resulting in values of: 1) 0.70 m s-1 or 4.83 BL s-1, 2) 0.82 m s-1 or 3.25 BL s-1 and 3) 0.85 m s-1 or 2.73 BL s-1. Combined with literature data from larger fish, a relation of Uopt (BL s-1) = 234.07(BL)-0.779 (R2= 0.9909) was established for this species. Yellowtail kingfish, either forced to perform sustained swimming exercise at an optimal speed of 2.46 BL s-1 (‘swimmers’) or allowed to perform spontaneous activity at low water flow (‘resters’) in a newly designed 3,600 L oval flume (with flow created by an impeller driven by an electric motor), were then compared. At the start of the experiment, ten fish were sampled representing the initial condition. After 18 days, swimmers (n= 23) showed a 92% greater increase in BL and 46% greater increase in BW as compared to resters (n= 23). As both groups were fed equal rations, feed conversion ratio (FCR) for swimmers was 1.21 vs. 1.74 for resters. Doppler ultrasound imaging showed a statistically significant higher blood flow (31%) in the ventral aorta of swimmers vs. resters (44 ± 3 mL min-1 vs. 34 ± 3 mL min-1, respectively, under anesthesia). Thus growth performance can be rapidly improved by optimal swimming, without larger feed investments.
Developmental and Persistent Toxicities of Maternally Deposited Selenomethionine in Zebrafish (Danio rerio).
The objectives of this study were (1) to establish egg selenium (Se) toxicity thresholds for mortality and deformities in early life stages of zebrafish (Danio rerio) after exposure to excess selenomethionine (SeMet, the dominant chemical species of Se in diets) via in ovo maternal transfer and (2) to investigate the persistent effects of developmental exposure to excess SeMet on swim performance and metabolic capacities in F1-generation adult zebrafish. Adult zebrafish were fed either control food (1.3 μg Se/g, dry mass or d.m.) or food spiked with increasing measured concentrations of Se (3.4, 9.8, or 27.5 μg Se/g, d.m.) in the form of SeMet for 90 d. In ovo exposure to SeMet increased mortality and deformities in larval zebrafish in a concentration-dependent fashion with threshold egg Se concentrations (EC10s) of 7.5 and 7.0 μg Se/g d.m., respectively. Impaired swim performance and greater respiration and metabolic rates were observed in F1-generation zebrafish exposed in ovo to 6.8 and 12.7 μg Se/g d.m and raised to adulthood in clean water. A species sensitivity distribution (SSD) based on egg Se developmental toxicity thresholds suggests that zebrafish are the most sensitive fish species studied to date.
Comparison of the acute effects of benzo-a-pyrene on adult zebrafish (Danio rerio) cardiorespiratory function following intraperitoneal injection versus aqueous exposure.
Muscle metabolism dominates the energy costs of locomotion. Although in vivo measures of muscle strain, activity and force can indicate mechanical function, similar muscle-level measures of energy use are challenging to obtain. Without this information locomotor systems are essentially a black box in terms of the distribution of metabolic energy. Although in situ measurements of muscle metabolism are not practical in multiple muscles, the rate of blood flow to skeletal muscle tissue can be used as a proxy for aerobic metabolism, allowing the cost of particular muscle functions to be estimated. Axial, undulatory swimming is one of the most common modes of vertebrate locomotion. In fish, segmented myotomal muscles are the primary power source, driving undulations of the body axis that transfer momentum to the water. Multiple fins and the associated fin muscles also contribute to thrust production, and stabilization and control of the swimming trajectory. We have used blood flow tracers in swimming rainbow trout (Oncorhynchus mykiss) to estimate the regional distribution of energy use across the myotomal and fin muscle groups to reveal the functional distribution of metabolic energy use within a swimming animal for the first time. Energy use by the myotomal muscle increased with speed to meet thrust requirements, particularly in posterior myotomes where muscle power outputs are greatest. At low speeds, there was high fin muscle energy use, consistent with active stability control. As speed increased, and fins were adducted, overall fin muscle energy use declined, except in the caudal fin muscles where active fin stiffening is required to maintain power transfer to the wake. The present data were obtained under steady-state conditions which rarely apply in natural, physical environments. This approach also has potential to reveal the mechanical factors that underlie changes in locomotor cost associated with movement through unsteady flow regimes.
Metabolic Depression in Cunner (Tautogolabrus adspersus) Is Influenced by Ontogeny, and Enhances Thermal Tolerance.
To examine the effect of ontogeny on metabolic depression in the cunner (Tautogolabrus adspersus), and to understand how ontogeny and the ability to metabolically depress influence this species' upper thermal tolerance: 1) the metabolic rate of 9°C-acclimated cunner of three size classes [0.2–0.5 g, young of the year (YOY); 3–6 g, small; and 80–120 g, large (adult)] was measured during a 2°C per day decrease in temperature; and 2) the metabolic response of the same three size classes of cunner to an acute thermal challenge [2°C h−1 from 10°C until Critical Thermal Maximum, CTMax] was examined, and compared to that of the Atlantic cod (Gadus morhua). The onset-temperature for metabolic depression in cunner increased with body size, i.e. from 5°C in YOY cunner to 7°C in adults. In contrast, the extent of metabolic depression was ∼80% (Q10 = ∼15) for YOY fish, ∼65% (Q10 = ∼8) for small fish and ∼55% (Q10 = ∼5) for adults, and this resulted in the metabolic scaling exponent (b) gradually increasing from 0.84 to 0.92 between 9°C to 1°C. All size classes of cunner had significantly (approximately 60%) lower routine metabolic rates at 10°C than Atlantic cod. However, there was no species' difference in the temperature-induced maximum metabolic rate, and this resulted in factorial metabolic scope values that were more than two-fold greater for cunner, and CTMax values that were 6–9°C higher (∼21 vs. 28°C). These results: 1) show that ontogeny influences the temperature of initiation and the extent of metabolic depression in cunner, but not O2 consumption when in a hypometabolic state; and 2) suggest that the evolution of cold-induced metabolic depression in this northern wrasse species has not resulted in a trade-off with upper thermal tolerance, but instead, an enhancement of this species' metabolic plasticity.
Growth Differentiation Factor 6 As a Putative Risk Factor in Neuromuscular Degeneration.
Mutation of Glass bottom boat, the Drosophila homologue of the bone morphogenetic protein or growth/differentiation factor (BMP/GDF) family of genes in vertebrates, has been shown to disrupt development of neuromuscular junctions (NMJ). Here we tested whether this same conclusion can be broadened to vertebrate BMP/GDF genes. This analysis was also extended to consider whether such genes are required for NMJ maintenance in post-larval stages, as this would argue that BMP genes are viable candidates for analysis in progressive neuromuscular disease. Zebrafish mutants harboring homozygous null mutations in the BMP-family gene gdf6a were raised to adulthood and assessed for neuromuscular deficits. Fish lacking gdf6a exhibited decreased endurance (∼50%, p = 0.005) compared to wild type, and this deficit progressively worsened with age. These fish also presented with significantly disrupted NMJ morphology (p = 0.009), and a lower abundance of spinal motor neurons (∼50%, p<0.001) compared to wild type. Noting the similarity of these symptoms to those of Amyotrophic Lateral Sclerosis (ALS) model mice and fish, we asked if mutations in gdf6a would enhance the phenotypes observed in the latter, i.e. in zebrafish over-expressing mutant Superoxide Dismutase 1 (SOD1). Amongst younger adult fish only bigenic fish harboring both the SOD1 transgene and gdf6a mutations, but not siblings with other combinations of these gene modifications, displayed significantly reduced endurance (75%, p<0.05) and strength/power (75%, p<0.05), as well as disrupted NMJ morphology (p<0.001) compared to wild type siblings. Bigenic fish also had lower survival rates compared to other genotypes. Thus conclusions regarding a role for BMP ligands in effecting NMJ can be extended to vertebrates, supporting conservation of mechanisms relevant to neuromuscular degenerative diseases. These conclusions synergize with past findings to argue for further analysis of GDF6 and other BMP genes as modifier loci, potentially affecting susceptibility to ALS and perhaps a broader suite of neurodegenerative diseases.
Comparative Swimming Performance of Five Catostomus Species and Roundtail Chub.
Decreased habitat connectivity and competition with nonnative species have led to declines of many freshwater fishes. An understanding of swimming performance can aid in the conservation of these fishes; however, acquiring sufficient numbers of rare and threatened species to perform swimming studies can be logistically challenging and ecologically costly. In order to determine whether swimming data for common sucker species may be substituted for that of similar but rare sucker species, we compared the swimming abilities of two rare western catostomids, Bluehead Sucker Catostomus discobolus and Flannelmouth Sucker C. latipinnis, as well as one catostomid with a less well understood status, Mountain Sucker C. platyrhynchus, with those of the common White Sucker C. commersonii and Longnose Sucker C. catostomus. We also examined Roundtail Chub Gila robusta because they are often included in conservation efforts involving Bluehead Sucker and Flannelmouth Sucker. The critical swimming velocities (Ucrit), standardized by body length, of Bluehead Sucker and Longnose Sucker differed significantly from those of White Sucker. However, there was no significant difference between the Ucrit of Mountain Sucker, Flannelmouth Sucker, and White Sucker. During constant acceleration trials, Bluehead Sucker exhibited the greatest swimming ability, reaching a mean maximum velocity of 4.56 ± 1.28 body lengths per second (BL/s; mean ± SD), followed by Mountain Sucker (3.56 ± 0.57 BL/s), White Sucker (3.28 ± 0.90 BL/s), Longnose Sucker (2.97 ± 0.31 BL/s), and Flannelmouth Sucker (2.22 ± 0.42 BL/s). Additionally, key behavioral differences in the swimming behaviors of the fishes studied were observed. We conclude that swimming performance data for common White Sucker should not be used in place of data for rarer species. Comprehensive swimming studies should be conducted on individual sucker species before implementing conservation strategies involving fish passageways or barriers.
Evolution of separate predation- and defence-evoked venoms in carnivorous cone snails
Venomous animals are thought to inject the same combination of toxins for both predation and defence, presumably exploiting conserved target pharmacology across prey and predators. Remarkably, cone snails can rapidly switch between distinct venoms in response to predatory or defensive stimuli. Here, we show that the defence-evoked venom of Conus geographus contains high levels of paralytic toxins that potently block neuromuscular receptors, consistent with its lethal effects on humans. In contrast, C. geographus predation-evoked venom contains prey-specific toxins mostly inactive at human targets. Predation- and defence-evoked venoms originate from the distal and proximal regions of the venom duct, respectively, explaining how different stimuli can generate two distinct venoms. A specialized defensive envenomation strategy is widely evolved across worm, mollusk and fish-hunting cone snails. We propose that defensive toxins, originally evolved in ancestral worm-hunting cone snails to protect against cephalopod and fish predation, have been repurposed in predatory venoms to facilitate diversification to fish and mollusk diets. Marine cone snails use venom for defence and predation. Here, Dutertre et al.show that cone snails produce structurally and functionally distinct venoms for each purpose and that defence toxins are potent on fish and mammalian targets, suggesting that they have evolved specifically for protection.
Ontogeny of critical swimming speeds for larval and pelagic juvenile rockfishes (Sebastes spp., family Scorpaenidae).
In this study, we hypothesised that a reduction in n-3 HUFA availability for higher consumers, as expected with global change, would negatively impact the physiological performances of fish. The aim was to experimentally evaluate the effect of n-3 HUFA dietary content on cardio-respiratory performances of the golden grey mullet (Liza aurata), a microalgae grazer of high ecological importance in European coastal areas. These performances were evaluated in terms of critical swimming speed U crit, associated oxygen consumption MO2, post-exercise oxygen consumption and calcium fluxes in cardiomyocytes. Two replicated groups of fish were fed on a rich (standard diet, SD diet: 1.2 % n-3 HUFA on dry matter basis, DMB) or a poor n-3 HUFA (low n-3 HUFA diet, LD diet: 0.2 % n-3 HUFA on DMB) diet during 5 months and were called SD and LD groups, respectively. The results showed that the LD diet reduced growth rate as well as the aerobic capacity of L. aurata at 20 °C, suggesting that fish may have to save energy by modifying the proportion of energy allocated to energy-demanding activities, such as digestion or feeding. In addition, this LD diet induced higher levels of haematocrit and plasma osmolality, indicating a stress response at the second and third levels in that group. However, the LD diet caused a massive increase in swimming efficiency. This should improve the capacity of L. aurata to migrate and to forage over a wide area. In turn, these could then compensate for the reduction in growth rate and aerobic metabolism.
Effects of rearing density and dietary fat content on burst-swim performance and oxygen transport capacity in juvenile Atlantic salmon Salmo salar.
The effects of hatchery rearing density (conventional or one third of conventional density) and feeding regime (high or reduced dietary fat levels) on burst‐swim performance and oxygen transport capacity were studied in hatchery‐reared Atlantic salmon Salmo salar, using wild fish as a reference group. There was no effect of rearing density or food regime on swimming performance in parr and smolts. The maximum swimming speed of wild parr was significantly higher than that of hatchery‐reared conspecifics, while no such difference remained at the smolt stage. In smolts, relative ventricle mass was higher in wild S. salar compared with hatchery‐reared fish. Moreover, wild S. salar had lower maximum oxygen consumption following a burst‐swim challenge than hatchery fish. There were no effects of hatchery treatment on maximum oxygen consumption or relative ventricle mass. Haemoglobin and haematocrit levels, however, were lower in low‐density fish than in fish reared at conventional density. Furthermore, dorsal‐fin damage, an indicator of aggression, was similar in low‐density reared and wild fish and lower than in S. salar reared at conventional density. Together, these results suggest that reduced rearing density is more important than reduced dietary fat levels in producing an S. salar smolt suitable for supplementary release.
Swimming performance and larval quality are altered by rearing substrate at early life phases in white sturgeon, Acipenser transmontanus (Richardson, 1836).
To investigate the role of substrate enrichment on larval growth and performance, white sturgeon, Acipenser transmontanus, were reared for 12 dph (the pre-feeding stage) in the presence and absence of enriched substrates (i.e. structurally complex media). Following this period, larval sturgeon were transferred to holding tanks with unenriched substrate (lacking structural complexity) and reared for an additional 30 days, during which time health and performance indicators (growth, Ucrit, startle response reaction time) and whole body lipid composition were assessed at 15 and 18°C. Sturgeon reared on unenriched substrates tended to grow more slowly (up to 40% reduced mass at 40 dph) with a lower condition factor (5–15% lower between 8 and 40 dph), but also exhibited delayed gut development and reduced rate of yolksac absorption (at 15 dph) than those reared with enriched substrates. Whole body lipid composition was significantly altered with substrate enrichment, although the biological relevance of these changes is unknown. White sturgeon reared without exposure to enriched substrates at some temperatures and developmental phases demonstrated modest reductions in aerobic (~20–30% lower Ucrit) and startle response performance (~5–10% slower reaction time) at 15 and 30 dph. Overall, most effects were influenced by rearing temperatures and parentage, such that differences were not statistically significant under all conditions. Clearly, however, substrate enrichment plays an important role in development of white sturgeon during early life stages.
Sustained costs of growth and the trajectory of recovery.
Large body size is associated with many fitness advantages. Despite this, most species do not grow at their physiological maximum, suggesting costs to rapid growth. There are now many empirical examples of trade‐offs with growth. Despite the ubiquity of physiological delays, few studies have evaluated the duration over which growth costs occur. To address this question, we measured swimming ability in growth‐manipulated A tlantic silversides ( M enidia menidia ). Fish were manipulated to grow at their maximum for 2 weeks and then were put on restricted rations, so they grew slowly. We then compared swimming ability with fish that had always grown slowly. Fast‐grown fish had significantly poorer swimming ability and continued to show a prolonged cost of this early period of rapid growth. We found that fish fully recovered normal swimming ability after ˜1 month of growing slowly. Most surprisingly, the trajectory of recovery was not monotonic; performance actually decreased before it improved. We conclude with a suggestion to develop a better understanding of the mechanisms linking growth to performance trade‐offs. Our results suggest that reduced swimming performance following fast growth is unlikely to be completely explained by bioenergetic constraints. Additionally, there is need for more nuanced life‐history theory that incorporates prolonged growth costs to increase accuracy of growth rate prediction.
Association between swimming performance, cardiorespiratory morphometry and thermal tolerance in Atlantic salmon (Salmo salar L.).
This experiment tested the hypothesis that swimming performance in Atlantic salmon (Salmo salar) parr is connected to cardiorespiratory performance and morphology, as well as maximum heart rate (fHmax) related measures of thermal tolerance. Moreover, it was hypothesized that the cardiorespiratory differences between poor and strong swimmers will be retained in a later life stage, i.e., 15 weeks post-smoltification and seawater transfer. This experiment screened a population of 3,200 parr (11.2 ± 0.25 g) for their swimming performance, classifying them as poor and good swimmers based on their critical swimming speeds (4.4±0.1 body length s-1 and >6.8±0.1 body length s-1, respectively). Compared with poor performing parr, good swimmers had a significantly thicker compact myocardium (by 23.7%) and taller gill secondary lamellae (by 16.2%). In contrast, there was no significant difference in maximum oxygen consumption between the two groups as assessed using a ‘chase’ protocol, and the relationship between heart rate specific measures of thermal tolerance and swim performance was variable. For example, three measures did not differ between the two groups, whereas the Arrhenius breakpoint temperature for fHmax and fHmax were higher and lower, respectively, in the poor swimmers. Importantly, the identified morphological and fHmax differences at the parr stage persisted after 15 weeks of common garden rearing in seawater, and they were associated with an increase in relative ventricular mass and a small, but significant, improvement in growth rate. Therefore, it seems that an early assessment of swimming performance can effectively screen for morphological capacities related to oxygen supply and growth rate, but less so for heart rate related measures of thermal tolerance.
Zebrafish (Danio rerio) as a model for the study of aging and exercise: Physical ability and trainability decrease with age.
A rapidly aging global population has motivated the development and use of models for human aging. Studies on aging have shown parallels between zebrafish and humans at the internal organization level; however, few parallels have been studied at the whole-organism level. Furthermore, the effectiveness of exercise as a method to mitigate the effects of aging has not been studied in zebrafish. We investigated the effects of aging and intermittent exercise on swimming performance, kinematics and behavior. Young, middle-aged and old zebrafish (20-29, 36-48 and 60-71% of average lifespan, respectively) were exercised to exhaustion in endurance and sprint swimming tests once a week for four weeks. Both endurance and sprint performance decreased with increased age. Swimming performance improved with exercise training in young and middle-aged zebrafish, but not in old zebrafish. Tail-beat amplitude, which is akin to stride length in humans, increased for all age groups with training. Zebrafish turning frequency, which is an indicator of routine activity, decreased with age but showed no change with exercise. In sum, our results show that zebrafish exhibit a decline in whole-organism performance and trainability with age. These findings closely resemble the senescence-related declines in physical ability experienced by humans and mammalian aging models and therefore support the use of zebrafish as a model for human exercise and aging.
Larval green and white sturgeon swimming performance in relation to water-diversion flows.
Little is known of the swimming capacities of larval sturgeons, despite global population declines in many species due in part to fragmentation of their spawning and rearing habitats by man-made water-diversion structures. Larval green (Acipenser medirostris) and white sturgeon (Acipenser transmontanus) inhabit the highly altered Sacramento-San Joaquin watershed, making them logical species to examine vulnerability to entrainment by altered water flows. The risk of larval sturgeon entrainment is influenced by the ontogeny of swimming capacity and dispersal timing and their interactions with water-diversion structure operations. Therefore, the aim of this study was to describe and compare the ontogeny and allometry of larval green and white sturgeon swimming capacities until completion of metamorphosis into juveniles. Despite the faster growth rates and eventual larger size of larval white sturgeon, green sturgeon critical swimming velocities remained consistently, though modestly, greater than those of white sturgeon throughout the larval life stage. Although behavioural interactions with water-diversion structures are also important considerations, regarding swimming capacity, Sacramento-San Joaquin sturgeons are most vulnerable to entrainment in February-May, when white sturgeon early larvae are in the middle Sacramento River, and April-May, when green sturgeon early larvae are in the upper river. Green sturgeon migrating downstream to the estuary and bays in October-November are also susceptible to entrainment due to their movements combined with seasonal declines in their swimming capacity. An additional inter-species comparison of the allometric relationship between critical swimming velocities and total length with several sturgeon species found throughout the world suggests a similar ontogeny of swimming capacity with growth. Therefore, although dispersal and behaviour differ among river systems and sturgeon species, similar recommendations are applicable for managers seeking to balance water demands with restoration and conservation of sturgeons worldwide.
Acute exposure to a common suspended sediment affects the swimming performance and physiology of juvenile salmonids.
Hatchling sea turtles emerge from nests, crawl down the beach and enter the sea where they typically enter a stereotypical hyperactive swimming frenzy. During this swim the front flippers are moved up and down in a flapping motion and are the primary source of thrust production. I used high-speed video linked with simultaneous measurement of thrust production in tethered hatchlings, along with high-speed video of free swimming hatchlings swimming at different water speeds in a swim flume to investigate the links between kinematics of front flipper movement, thrust production and swimming speed. In particular I tested the hypotheses that (1) increased swimming speed is achieved through an increased stroke rate; (2) force produced per stroke is proportional to stroke amplitude, (3) that forward thrust is produced during both the down and up phases of stroking; and (4) that peak thrust is produced towards the end of the downstroke cycle. Front flipper stroke rate was independent of water speed refuting the hypothesis that swimming speed is increased by increasing stroke rate. Instead differences in swimming speed were caused by a combination of varying flipper amplitude and the proportion of time spent powerstroking. Peak thrust produced per stroke varied within and between bouts of powerstroking, and these peaks in thrust were correlated with both flipper amplitude and flipper angular momentum during the downstroke supporting the hypothesis that stroke force is a function of stroke amplitude. Two distinct thrust production patterns were identified, monophasic in which a single peak in thrust was recorded during the later stages of the downstroke, and biphasic in which a small peak in thrust was recorded at the very end of the upstroke and this followed by a large peak in thrust during the later stages of the downstroke. The biphasic cycle occurs in ∼20% of hatchlings when they first started swimming, but disappeared after one to two hours of swimming. The hypothesis that forward thrust is produced during both the up and down stroke was only supported relatively rarely in hatchlings that exhibited the diphasic cycle, the majority of time forward thrust was only produced during the downstroke phase. The hypothesis that peak forward thrust is produced during the end of the downstroke was supported in both the monophasic and biphasic thrust producing stroke cycles.
Fish swimming in schools save energy regardless of their spatial position.
For animals, being a member of a group provides various advantages, such as reduced vulnerability to predators, increased foraging opportunities and reduced energetic costs of locomotion. In moving groups such as fish schools, there are benefits of group membership for trailing individuals, who can reduce the cost of movement by exploiting the flow patterns generated by the individuals swimming ahead of them. However, whether positions relative to the closest neighbours (e.g. ahead, sided by side or behind) modulate the individual energetic cost of swimming is still unknown. Here, we addressed these questions in grey mullet Liza aurata by measuring tail-beat frequency and amplitude of 15 focal fish, swimming in separate schools, while swimming in isolation and in various positions relative to their closest neighbours, at three speeds. Our results demonstrate that, in a fish school, individuals in any position have reduced costs of swimming, compared to when they swim at the same speed but alone. Although fish swimming behind their neighbours save the most energy, even fish swimming ahead of their nearest neighbour were able to gain a net energetic benefit over swimming in isolation, including those swimming at the front of a school. Interestingly, this energetic saving was greatest at the lowest swimming speed measured in our study. Because any member of a school gains an energetic benefit compared to swimming alone, we suggest that the benefits of membership in moving groups may be more strongly linked to reducing the costs of locomotion than previously appreciated.
In ovo exposure to selenomethionine via maternal transfer increases developmental toxicities and impairs swim performance in F1 generation zebrafish (Danio rerio).
Intense swimming causes circulatory lactate accumulation in rainbow trout because lactate disposal ( R d ) is not stimulated as strongly as lactate appearance ( R a ). This mismatch suggests that maximal R d is limited by tissue capacity to metabolize lactate. This study uses exogenous lactate to investigate what constrains maximal R d and minimal R a. Our goals were to determine how exogenous lactate affects: 1) R a and R d of lactate under baseline conditions or during graded swimming, and 2) exercise performance (critical swimming speed, U crit ) and energetics (cost of transport, COT). Results show that exogenous lactate allows swimming trout to boost maximal R d lactate by 40% and reach impressive rates of 56 μmol·kg −1 ·min −1. This shows that the metabolic capacity of tissues for lactate disposal is not responsible for setting the highest R d normally observed after intense swimming. Baseline endogenous R a (resting in normoxic water) is not significantly reduced by exogenous lactate supply. Therefore, trout have an obligatory need to produce lactate, either as a fuel for oxidative tissues and/or from organs relying on glycolysis. Exogenous lactate does not affect U crit or COT, probably because it acts as a substitute for glucose and lipids rather than extra fuel. We conclude that the observed 40% increase in R d lactate is made possible by accelerating lactate entry into oxidative tissues via monocarboxylate transporters (MCTs). This observation together with the weak expression of MCTs and the phenomenon of white muscle lactate retention show that lactate metabolism of rainbow trout is significantly constrained by transmembrane transport.
Estimating activity-specific energy expenditure in a teleost fish, using accelerometer loggers.
The relationship between tail (or wing) beat frequency (ftail), amplitude (A) and forward velocity (U) in animals using oscillatory propulsion, when moving at a constant cruising speed, converges upon an optimum range of the Strouhal number (St=ftail·A/U). Previous work, based on observational data and supported by theory, shows St falling within the broad optimum range (0.2
Acute effects of beta-naphthoflavone on cardiorespiratory function and metabolism in adult zebrafish (Danio rerio).
Aryl hydrocarbon receptor (AhR) agonists are known to cause lethal cardiovascular deformities in fish after developmental exposure. Acute adult fish toxicity of AhR agonists is thought to be minimal, but limited evidence suggests sublethal effects may also involve the cardiac system in fish. In the present study, adult zebrafish (Danio rerio) were aqueously exposed to solvent control or three nominal concentrations of the commonly used model AhR agonist, β-naphthoflavone (BNF), for 48 h. Following exposure, fish were subjected to echocardiography to determine cardiac function or swimming tests with concurrent oxygen consumption measurement. Critical swimming speed and standard metabolic rate were not significantly changed, while active metabolic rate decreased with increasing BNF exposure, reaching statistical significance at the highest BNF exposure. Factorial aerobic scope was the most sensitive end-point and was decreased at even lower BNF concentrations, indicating a reduced aerobic capacity after acute AhR agonist exposure in adult fish. The highest BNF concentration caused a significant decrease in cardiac output, while increasing the ratio of atrial to ventricular heart rate (indicating atrioventricular conduction blockade). In conclusion, the effect of acute BNF exposure on zebrafish metabolic capacity and cardiac function is likely to be physiologically important given that fish have a critical need for adequate oxygen to fuel essential survival behaviors such as swimming, growth, and reproduction. Future studies should be directed at examining the effects of other polycyclic aromatic hydrocarbons on fish cardiorespiratory function to determine whether their effects and modes of action are similar to BNF.
Acute Embryonic or Juvenile Exposure to Deepwater Horizon Crude Oil Impairs the Swimming Performance of Mahi-Mahi (Coryphaena hippurus).
The Deepwater Horizon incident likely resulted in exposure of commercially and ecologically important fish species to crude oil during the sensitive early life stages. We show that brief exposure of a water-accommodated fraction of oil from the spill to mahi-mahi as juveniles, or as embryos/larvae that were then raised for ∼25 days to juveniles, reduces their swimming performance. These physiological deficits, likely attributable to polycyclic aromatic hydrocarbons (PAHs), occurred at environmentally realistic exposure concentrations. Specifically, a 48 h exposure of 1.2 ± 0.6 μg L(-1) ΣPAHs (geometric mean ± SEM) to embryos/larvae that were then raised to juvenile stage or a 24 h exposure of 30 ± 7 μg L(-1) ΣPAHs (geometric mean ± SEM) directly to juveniles resulted in 37% and 22% decreases in critical swimming velocities (Ucrit), respectively. Oil-exposed larvae from the 48 h exposure showed a 4.5-fold increase in the incidence of pericardial and yolk sac edema relative to controls. However, this larval cardiotoxicity did not manifest in a reduced aerobic scope in the surviving juveniles. Instead, respirometric analyses point to a reduction in swimming efficiency as a potential alternative or contributing mechanism for the observed decreases in Ucrit.
Juvenile and adult hardhead Mylopharodon conocephalus oxygen consumption rates: effects of temperature and swimming velocity.
California’s populations of hardhead Mylopharodon conocephalus, a species of special concern, have declined, possibly due to dam construction with consequent temperature and water-velocity changes, and the introduction of non-native species. Environmental temperature effects on this large (to 60 cm SL) cyprinid, and its swimming abilities, are not well known. To address these deficiencies and to assist conservation efforts, we measured resting and swimming metabolic rates of adult and juvenile hardhead acclimated to four temperatures (11, 16, 21, or 25 °C). Resting metabolic rates (RMR, mg O2 kg−0.79 h−1) generally increased with acclimation temperature, in adults and juveniles, with low to moderate thermal sensitivity (Q10 range: 1.33–2.04). Swimming metabolic rates, in Brett-style respirometers, of adults ranged from 209 to 1342 mg O2 kg−1 h−1 at velocities from 30 to 90 cm s−1, and juveniles ranged from 393 to 769 mg O2 kg−1 h−1 from 10 to 50 cm s−1. Adults were lethargic at 11 °C and juveniles frequently refused to swim at 11 and 16 °C, but all fish swam well at 21 and 25 °C. These results suggest that hardhead are well-suited for sustained aerobic activity over a range of flow velocities, at moderate temperatures (ca. 16 to 21 °C). However, juveniles, emerging in spring, may not be able to perform in cold water and/or high flow velocities, providing a caution to dam managers and regulators to avoid spring and summer operations whereby juveniles experience conditions outside of those occurring in unregulated rivers.
Physiology and performance of wild and domestic strains of diploid and triploid rainbow trout (Oncorhynchus mykiss) in response to environmental challenges.
To determine the factors that may contribute to the poor survival of triploid (3n) rainbow trout (Oncorhynchus mykiss) in lake stocking programs, we compared the physiology and responses to environmental challenges of four wild strains and one domestic strain of diploid (2n) and 3n juvenile rainbow trout. Over four successive years, wild trout were caught from nature, spawned, and progeny were reared in a hatchery along with hatchery-bred domestic trout. Offspring of each strain were raised for up to 12 months as both 2n and 3n, and growth rate, critical swimming speed, routine oxygen consumption rate, critical oxygen tensions, thermal tolerance, and hypoxia tolerance were assessed in a laboratory setting. Cohorts of the 2008, 2009, and 2010 wild strains were also stocked into two experimental lakes and recaptured as adults using traps and fyke nets in 2011 for laboratory analysis. In the juvenile trout, the only measure of performance to show a consistent difference between 2n and 3n individuals across all strains was hypoxia tolerance, where 3n trout had a shorter time to loss of equilibrium (LOE) at 16 Torr than their 2n counterparts, but this effect was not seen in adult, lake-reared trout. Strain had a significant effect on specific growth rate, critical swimming speed (U crit ), and time to LOE in hypoxia, although the effects of strain on these variables was not consistent from year to year. Overall, this study suggests that poorer hypoxia tolerance in 3n trout compared with 2n trout may be a contributing factor to the higher lake stocking mortalities in 3n trout.
Dietary selenomethionine exposure alters swimming performance, metabolic capacity and energy homeostasis in juvenile fathead minnow.
The Effect of Short-Duration Seawater Exposure and Acoustic Tag Implantation on the Swimming Performance and Physiology of Presmolt Juvenile Coho Salmon.
To assess the potential impact of “tag effect” on seaward‐migrating Coho Salmon Oncorhynchus kisutch, presmolt juveniles were surgically implanted with acoustic transmitters followed by exposure to freshwater (FW, 0‰ salinity) or seawater (SW; 30‰ salinity) for 24 h and then subjected to repeated critical swimming speed ( U crit ) trials. Three different experimental tag‐treatment groups were established: control (no surgery), sham (surgery but no tag), and tagged (surgically implanted tag), with a range of 9–12 fish in each group. Tagged fish were implanted with Vemco V6 dummy acoustic transmitters (DAT: 17.0 mm long × 6 mm diameter, 1.0 g in air). After completion of two U crit trials, separated by a recovery period, all fish were euthanized and sampled to determine hematocrit (Hct) and plasma osmolality. In the FW exposure, the mean U crit of the control treatment was significantly higher than that of the tagged treatment ( P = 0.04). No significant differences in swimming performance were observed among the SW treatment groups, and no significant differences were observed between U crit trials ( U crit 1 and U crit 2) for any of the experimental treatments groups. Seawater exposure did, however, result in slightly reduced, but not statistically different, swimming speeds and concomitantly higher plasma osmolalities ( P < 0.001) compared with FW exposure. Predictions made with data from this study suggest that sample sizes (per tag treatment) of n = 25 are sufficient to detect a 15–20% difference in U crit sample means with 80% power. Collectively, these data do not provide substantial statistical evidence that the swimming performance of juvenile Coho Salmon tagged with surgically implanted acoustic transmitters is significantly reduced compared with untagged fish.
Swimming Physiology of Fish: Towards using exercise to farm a fit fish in sustainable aquaculture.
In light of mounting fishing pressures, increased aquaculture production and a growing concern for fish well-being, improved knowledge on the swimming physiology of fish and its application to fisheries science and aquaculture is needed. This book presents recent investigations into some of the most extreme examples of swimming migrations in salmons, eels and tunas, integrating knowledge on their performance in the laboratory with that in their natural environment. For the first time, the application of swimming in aquaculture is explored by assessing the potential impacts and beneficial effects. The modified nutritional requirements of “athletic” fish are reviewed as well as the effects of exercise on muscle composition and meat quality using state-of-the-art techniques in genomics and proteomics. The last chapters introduce zebrafish as a novel exercise model and present the latest technologies for studying fish swimming and aquaculture applications.
Swimming flumes as a tool for studying swimming behaviour and physiology: Current applications and future developments. Part IV, Chapter 15. pp 345-376. In: Swimming Physiology of Fish: Towards using exercise to farm a fit fish in sustainable aquaculture. Palstra and Planas (eds) 2013.
Swimming flumes enable fish swimming behavior, physiology, and performance to be quantified in ways that are not practicable for fish swimming through open water. By placing fish in a water flow, speed can be controlled, fish can be instrumented to monitor a wide range of physiological parameters, and the exchange of materials between the fish and water can be quantified. This can provide vital information regarding fish fitness and health. If meaningful data are to be obtained, however, careful consideration must be given to flume design and operation, experimental protocol and the physiological state of the fish. Modifications to standard flume designs can potentially allow for accommodation of a wider range of species and experimental conditions that will enhance basic understanding of fish physiology and behavior and can potentially be applied in optimizing aquacultural techniques.
Practical aspects of induced exercise in finfish aquaculture. Part IV, pp 377-405. In: Swimming Physiology of Fish: Towards using exercise to farm a fit fish in sustainable aquaculture. Palstra and Planas (eds) 2013.
Sustained optimal exercise can improve the productivity, quality and welfare of farmed fish but the benefits of exercise are currently not being gained by the aquaculture industry. This chapter will address the issue by providing information on what we currently know about (1) fish swimming behaviour in aquaculture, (2) the amenability of different species to exercise and (3) the range of factors that serve to modify the response of fish to exercise. This knowledge will hopefully provide a platform on which exercise can be applied, in addition to guidance on when exercise should be encouraged and when it should be avoided. A review of the current literature suggests that farmed fish are not swimming at optimal levels for the greatest gains in productivity. Practical steps for the introduction of exercise across the current range of intensive holding facilities (i.e., tanks and seacages) are therefore provided. Some of these techniques are already in existence while others are either developing or based on future research concepts. There are many challenges for the implementation of exercise in aquaculture but the future benefits to all involved (farmers-consumers) are well worth striving for.
Relationships among Traits of Aerobic and Anaerobic Swimming Performance in Individual European Sea Bass Dicentrarchus labrax.
Teleost fishes exhibit wide and temporally stable inter-individual variation in a suite of aerobic and anaerobic locomotor traits. One mechanism that could allow such variation to persist within populations is the presence of tradeoffs between aerobic and anaerobic performance, such that individuals with a high capacity for one type of performance have a reduced capacity for the other. We investigated this possibility in European seabass Dicentrarchus labrax, each measured for a battery of indicators of maximum locomotor performance. Aerobic traits comprised active metabolic rate, aerobic scope for activity, maximum aerobic swimming speed, and stride length, using a constant acceleration test. Anaerobic traits comprised maximum speed during an escape response, maximum sprint speed, and maximum anaerobic burst speed during constant acceleration. The data provided evidence of significant variation in performance among individuals, but there was no evidence of any trade-offs among any traits of aerobic versus anaerobic swimming performance. Furthermore, the anaerobic traits were not correlated significantly among each other, despite relying on the same muscular structures. Thus, the variation observed may reflect trade-offs with other morphological, physiological or behavioural traits.
Chronic Hypoxia Exposure of Trout Embryos Alters Swimming Performance and Cardiac Gene Expression in Larvae.
Hypoxia exposure during embryonic development of rainbow trout causes developmental delay and bradycardia and alters the ontogeny of cardiac regulatory control mechanisms. The purpose of this study was to characterize how hypoxia exposure from the day of fertilization until stage 34 (57 d postfertilization) affects the aerobic fitness and growth of the hatched fish at multiple stages. In addition, we characterized the expression of gene transcripts for seven troponin I (TnI) isoforms to examine the effect of hypoxia treatment on cardiac muscle development. Results demonstrate that the critical swimming speed of the hypoxia-exposed fish was significantly less than that of the control group at stage 35 and the fry stage. Growth was reduced in the hypoxia-treated fish between stages 35 and 37, as was the relative lipid content at stage 37. Finally, six TnI isoforms were found in all hearts. One of these isoforms, RTcTnI, decreased in abundance between stage 35 and the fry stage, but hypoxia-exposed fish had higher levels than did controls at the fry stage. The abundance of AScTnI2 was significantly lower in hypoxia-exposed fry fish than in controls. These results indicate that chronic hypoxia exposure during embryonic development has long-term consequences on aerobic fitness, growth, and cardiac gene expression following hatch.
Swimming capability and swimming behaviour of juvenile Acipenser schrenckii.
Water flow is a critical driver of aquatic ecosystem health and function. Amid rising concerns over changing flow regimes, there is an urgent need to understand the functional mechanisms by which flow influences patterns of freshwater biodiversity. We explored the functional link between flow velocity and microhabitat specialisation in a speciose group of freshwater gobies (comprising over half the total fish species richness) within insular streams of the Australian Wet Tropics under base flow conditions. We addressed two particular questions: (i) What is the relative selectivity of species towards streambed composition and water flow velocity? and (ii) Can patterns of microhabitat occupation be explained by differences in intrinsic flow performance among species? To answer these questions, we combined visual field observations of microhabitat use with flow tank assessments of flow speed performance. Tropical freshwater gobies displayed strong specificity towards flow velocities, while being relatively non‐selective towards streambed composition. At opposite extremes of the spectrum, we found Sicyopterus lagocephalus occupying high‐flow (>1.0 ms −1 ) microhabitats while Redigobius bikolanus selected slower‐flow (<0.05 ms −1 ) areas. These patterns of microhabitat flow specificity were largely explained by the different abilities of species to swim and/or cling to the substratum under these different flow settings. Our findings confirm suggestions that predictable base flows in tropical streams support habitat specialists, which include one species capable of occupying areas of extremely high flow that very few other fishes can withstand. The functional link between flow and gobioid fish distribution patterns could occur throughout tropical streams of the Indo‐Pacific and Caribbean as a widespread phenomenon that may help inform stream flow management guidelines to maintain this substantial component of tropical freshwater biodiversity around the globe.
Exploring the mechanics of thunniform propulsion: a model study.
Thunniform propulsion is considered a case study in convergent evolution. Independently derived at least four times, it is characterized by uniquely high lift-based thrust and efficient performance. As such, it has been the focus of studies from biologists, engineers, and physicists. Unfortunately, direct physical measurements of this phenomenon are difficult to obtain. Therefore, the majority of research so far has consisted of theoretical modeling or experimental testing with models of low biofidelity. We created a test apparatus that would more accurately mimic thunniform propulsion as seen in the skipjack tuna (Katsuwonus pelamis (L., 1758)). Motion parameters and swimming speeds, as well as caudal fin size, shape, and material properties, were all taken into account and closely matched with in vivo measurements. Instantaneous lateral and in-flow forces were measured in tests over a range of motion regimes. Overall, general motion parameter requirements for thrust generation were determined and quantified. Thrust production, of up to 0.42 N (per whole caudal fin) with a coefficient of thrust of approximately 0.2, were in line with estimates of whole-body drag. Propulsive efficiency estimates were low (≤35%) compared with estimates in the literature of up to 90%. Quasi-static analysis was also conducted and shown to underpredict measured thrust values by up to 50%.
Thermal acclimation in rainbow smelt, Osmerus mordax, leads to faster myotomal muscle contractileproperties and improved swimming performance.
Rainbow smelt (Osmerus mordax) display an impressive ability to acclimate to very cold water temperatures. These fish express both anti-freeze proteins and glycerol in their plasma, liver, muscle and other tissues to avoid freezing at sub-zero temperatures. Maintenance of glycerol levels requires active feeding in very cold water. To understand how these fish can maintain activity at cold temperatures, we explored thermal acclimation by the myotomal muscle of smelt exposed to cold water. We hypothesized that cold-acclimated fish would show enhanced swimming ability due to shifts in muscle contractile properties. We also predicted that shifts in swimming performance would be associated with changes in the expression patterns of muscle proteins such as parvalbumin (PV) and myosin heavy chain (MyHC). Swimming studies show significantly faster swimming by smelt acclimated to 5°C compared to fish acclimated to 20°C when tested at a common test temperature of 10°C. The cold-acclimated fish also had faster muscle contractile properties, such as a maximum shortening velocity (Vmax) almost double that of warm-acclimated fish at the same test temperature. Cold-acclimation is associated with a modest increase in PV levels in the swimming muscle. Fluorescence microscopy using anti-MyHC antibodies suggests that MyHC expression in the myotomal muscle may shift in response to exposure to cold water. The complex set of physiological responses that comprise cold-acclimation in smelt includes modifications in muscle function to permit active locomotion in cold water.
Ectoparasites increase swimming costs in a coral reef fish.
Ectoparasites can reduce individual fitness by negatively affecting behavioural, morphological and physiological traits. In fishes, there are potential costs if ectoparasites decrease streamlining, thereby directly compromising swimming performance. Few studies have examined the effects of ectoparasites on fish swimming performance and none distinguish between energetic costs imposed by changes in streamlining and effects on host physiology. The bridled monocle bream ( Scolopsis bilineatus ) is parasitized by an isopod ( Anilocra nemipteri), which attaches above the eye. We show that parasitized fish have higher standard metabolic rates (SMRs), poorer aerobic capacities and lower maximum swimming speeds than non-parasitized fish. Adding a model parasite did not affect SMR, but reduced maximum swimming speed and elevated oxygen consumption rates at high speeds to levels observed in naturally parasitized fish. This demonstrates that ectoparasites create drag effects that are important at high speeds. The higher SMR of naturally parasitized fish does, however, reveal an effect of parasitism on host physiology. This effect was easily reversed: fish whose parasite was removed 24 h earlier did not differ from unparasitized fish in any performance metrics. In sum, the main cost of this ectoparasite is probably its direct effect on streamlining, reducing swimming performance at high speeds.
Effects of chronic dietary selenomethionine exposure performance, aerobic metabolism and methionine catabolism (Danio rerio).
Changes in lactate kinetics as a function of exercise intensity have never been measured in an ectotherm. Continuous infusion of tracer is necessary to quantify rates of lactate appearance (Ra) and disposal (Rd), but it requires double catheterization that could interfere with swimming. Using rainbow trout, our goals were: (1) to determine the potential effects of catheters and blood sampling on metabolic rate (MO2), total cost of transport (TCOT), net cost of transport (NCOT), and critical swimming speed (Ucrit), and (2) to monitor changes in lactate fluxes during prolonged, steady-state swimming or graded swimming from rest to Ucrit. This athletic species maintains high baseline lactate fluxes of 24 μmol kg-1min-1 that are only increased at intensities >2.4 body lengths per s (BL s-1) or 85% Ucrit. As the fish reaches Ucrit, Ra lactate is more strongly stimulated (+67% to 40.4 μmol kg-1 min-1) than Rd lactate (+41% to 34.7 μmol kg-1 min-1), causing a 4-fold increase in blood lactate concentration. Without this stimulation of Rd during intense swimming, lactate accumulation would double. By contrast, steady-state exercise at 1.7 BL s-1 increases lactate fluxes to ~30 μmol kg-1 min-1, with a trivial mismatch between Ra and Rd that only affects blood concentration minimally. Results also show that the catheterizations and blood sampling needed to measure metabolite kinetics in exercising fish have no significant impact on MO2 or TCOT. However, these experimental procedures affect locomotion energetics by increasing NCOT at high speeds and by decreasing Ucrit.
Finding the best estimates of metabolic rates in a coral reef fish.
Metabolic rates of aquatic organisms are estimated from measurements of oxygen consumption rates (ṀO2) through swimming and resting respirometry. These distinct approaches are increasingly used in eco- and conservation physiology studies; however, few studies have tested whether they yield comparable results. We examined whether two fundamental ṀO2 measures, standard metabolic rate (SMR) and maximum metabolic rate (MMR), vary based on the method employed. Ten bridled monocle bream (Scolopsis bilineatus) were exercised using (1) a critical swimming speed (Ucrit) protocol, (2) a 15 min exhaustive chase protocol and (3) a 3 min exhaustive chase protocol followed by brief air exposure. Protocol (1) was performed in a swimming respirometer whereas protocols (2) and (3) were followed by resting respirometry. SMR estimates in swimming respirometry were similar to those in resting respirometry when a three-parameter exponential or power function was used to extrapolate the swimming speed-ṀO2 relationship to zero swimming speed. In contrast, MMR using the Ucrit protocol was 36% higher than MMR derived from the 15 min chase protocol and 23% higher than MMR using the 3 min chase 1 min air exposure protocol. For strong steady (endurance) swimmers, such as S. bilineatus, swimming respirometry can produce more accurate MMR estimates than exhaustive chase protocols because oxygen consumption is measured during exertion. However, when swimming respirometry is impractical, exhaustive chase protocols should be supplemented with brief air exposure to improve measurement accuracy. Caution is warranted when comparing MMR estimates obtained with different respirometry methods unless they are cross-validated on a species-specific basis.
Effects of intraspecific variation in reproductive traits, pectoral fin use and burst swimming on metabolic rates and swimming performance: a study on the Trinidadian guppy (Poecilia reticulata Peters).
There is considerable intraspecific variation in metabolic rates and locomotor performance in aquatic ectothermic vertebrates, however, the mechanistic basis remains poorly understood. Using pregnant Trinidadian guppies (Poecilia reticulata Peters), a live-bearing teleost, we examined effects of reproductive traits, pectoral fin use, and burst-assisted swimming on the swimming metabolic rate, standard metabolic rate (MO2std) and prolonged swimming performance (Ucrit). Reproductive traits (RT) included reproductive allocation and pregnancy stage; the former defined as the mass of the reproductive tissues divided by the total body mass. Results showed that the metabolic rate increased curvilinearly with swimming speed. The slope of the relationship was used as an index of swimming cost. There was no evidence that RT correlated with the swimming cost, MO2std, or Ucrit. In contrast, data revealed strong effects of pectoral fin use on swimming cost and Ucrit. P. reticulata employed body-caudal fin (BCF) swimming at all tested swimming speeds, however, fish with a high simultaneous use of the pectoral fins exhibited increased swimming cost and decreased Ucrit. These data indicated that combining BCF swimming and pectoral fin movement over a wide speed range, presumably to support swimming stability and control, is an inefficient swimming behaviour. Finally, transition to burst-assisted swimming was associated with an increase in aerobic metabolic rate. Our study highlights other factors than swimming speed affecting swimming cost and suggests that intraspecific diversity in biomechanical performance, such as pectoral fin use, is an important source of variation in both locomotor cost and maximal performance.
Reduced swim performance and aerobic capacity in adult zebrafish exposed to waterborne selenite.
Understanding how complex traits evolve is critical for understanding how animals meet environmental challenges. In my dissertation I studied the mechanisms by which prolonged swimming performance (Ucrit), a complex whole-animal performance trait, has evolved among ancestral anadromous-marine and derived non-migratory stream-resident ecotypes of threespine stickleback (Gasterosteus aculeatus). I showed that stream-resident populations from Bonsall and West Creeks have evolved a decreased Ucrit, but via different genetic mechanisms, and that three additional wild stream-resident populations also had low Ucrits. Collectively, these data are consistent with a role for natural selection in the evolution of a reduced capacity for prolonged swimming after freshwater colonization. I next determined which candidate morphological, physiological, and biochemical traits evolved in conjunction with these decreases in Ucrit capacity in Bonsall and West Creek stream- resident populations. I found that a number of traits predicted to influence Ucrit in fishes evolved as predicted in both stream-resident populations. To further assess the associations between these candidate traits and Ucrit, I compared the genetic architecture of Ucrit with the genetic architecture of candidate traits by comparing F1 hybrids to pure F1 crosses. I found that a number of candidate traits had a similar genetic architecture as Ucrit, but that many of these traits were population-specific. These data suggest that non-parallel genetic, morphological and physiological mechanisms may contribute to the evolution of similar performance capacities. To test the associations between candidate traits and Ucrit, I correlated traits with Ucrit in Bonsall Creek F2 hybrids. In F2 hybrids the complete linkage of all divergent traits in F1 crosses is partially broken apart. I found that only four candidate traits (ventricle mass, adductor mass, and adductor and abductor citrate synthase activities) significantly regressed against Ucrit in F2 hybrids, accounting for 17.9% of variation in Ucrit. These data suggest that, when dissociated from other traits, many candidate traits do not have a strong effect on Ucrit, additional unmeasured traits are likely to influence Ucrit, and that many traits are necessary to reach a high Ucrit. This dissertation provides a clear empirical example of the patterns of evolution in a complex trait and its underlying mechanisms.
Can Copper-Based Substrates Be Used to Protect Hatcheries from Invasion by the New Zealand Mudsnail?
Copper sheet (abbreviated SC), copper mesh (MC), copper-based ablative antifouling paint (AP), and copper-based nonablative antifouling paint (NP) were tested to determine each material's ability to serve as contact deterrents to the invasive New Zealand mudsnail Potamopyrgus antipodarum. Mudsnail responses to each surface treatment was measured across a range of water temperatures (8, 12, 18, and 24°C), hardness levels (75, 125, 175, and 300 mg/L as CaCO3), pH values (6, 7, and 8.5), water velocities (0, 9, and 33 cm/s), and levels of surface fouling (0, 6, and 10 weeks of exposure). Mean crawling distances (MCD) by the mudsnails in the temperature, hardness, and pH experiments were significantly lower on the SC and MC surface treatment than the NP treatment. In the velocity experiment, static, nonflowing conditions produced the lowest MCD, whereas increasing water velocity from 9 cm/s to 33 cm/s did not produce a significant change in MCD on either the SC or MC surfaces. Finally, MCD did increase significantly on the AP surface treatment after exposure to surface fouling; fouling had no significant effect on MCD on the MC or SC surface. Overall, MC and SC were determined to be the most effective surfaces in limiting the locomotor activity of the mudsnail. By lining the inside surface of effluent pipes with either material, hatcheries may be able to eliminate a potential invasion pathway for this organism. Based on the maximum observed crawling distance observed throughout these experiments, we recommend that barriers constructed of MC or SC be a minimum length of 250 cm to provide a satisfactory level of protection against mudsnail invasion. Additional considerations include design and integration with other types of barriers.
Effect of dispersed crude oil exposure upon the aerobic metabolic scope in juvenile golden grey mullet (Liza aurata)
This study evaluated the toxicity of dispersant application which is, in nearshore area, a controversial response technique to oil spill. Through an experimental approach with juveniles of Liza aurata, the toxicity of five exposure conditions was evaluated: (i) a chemically dispersed oil simulating dispersant application; (ii) a single dispersant as an internal control of chemically dispersed oil; (iii) a mechanically dispersed oil simulating natural dispersion of oil; (iv) a water soluble fraction of oil simulating an undispersed and untreated oil slick and (v) uncontaminated sea water as a control exposure condition. The relative concentration of PAHs (polycyclic aromatic hydrocarbons) biliary metabolites showed that the incorporation of these toxic compounds was increased if the oil was dispersed, whether mechanically or chemically. However, toxicity was not observed at the organism level since the aerobic metabolic scope and the critical swimming speed of exposed fish were not impaired.
Partitioning of oxygen uptake and cost of surfacing during swimming in the air-breathing catfish Pangasianodon hypophthalmus.
Though air-breathing has probably evolved mainly as a response to hypoxia, it may provide an important oxygen supplement when metabolism is elevated, as for example during swimming. Due to the increased travelling distance involved when an air-breathing fish swims to and from the surface, and the increased drag when the surface is breached, it can be proposed that air-breathing results in a rise in the apparent cost of transport. In order to investigate this hypothesis, it is necessary to use a fish that is able to swim equally well with and without access to air. The striped catfish Pangasianodon hypophthalmus has been shown to have a sufficiently high capacity for aquatic oxygen uptake in normoxia, to allow for such a comparison. Here, we measured the partitioning of oxygen uptake ( $$ \dot{M}{\text{O}}_{2} $$ ) during swimming and recovery, and calculated the apparent cost of transport with and without access to air, under normoxic conditions. Aerial $$ \dot{M}{\text{O}}_{2} $$ constituted 25–40 % of the total $$ \dot{M}{\text{O}}_{2} $$ during swimming and less than 15 % during recovery. The net cost of transport was 25 % lower in fish that did not air-breathe compared to fish that did, showing that the cost of surfacing can be substantial. This is the first study to measure partitioning in an air-breathing fish during swimming at velocities close to the critical swimming speed.
Variability in swimming performance and underlying physiology in rainbow trout (Oncorhychus mykiss) and brown trout (Salmo trutta).
Swimming performance and behaviour in fish has been shown to vary depending on the investigation method. In this study, an endurance swimming curve was generated for young-of-the-year shortnose sturgeon (Acipenser brevirostrum LeSueur, 1818) (~7 cm total length, ~2 g) and compared with values determined in a separate incremental swimming (critical swimming, U crit ) test. Using video, tail-beat frequency (TBF) was quantified and compared for fish swimming under both swimming tests. From the endurance-curve analysis, it was found that sturgeon did not display a statistically significant burst swimming phase. Maximum sustainable swimming speed (calculated to be 18.00 cm·s –1 ) from the endurance curve occurred at ~80% of U crit (22.30 cm·s –1 ). TBF was similar at all speeds for both swimming tests, except at speeds approaching U crit, where fish displayed TBFs of 4.29 Hz for the endurance protocol and 2.26 Hz for the U crit protocol. TBF was more variable between individuals swimming at the same speed within the U crit compared with the endurance protocol. Finally, a significant negative correlation was found between TBF and U crit in individual fish, suggesting that station-holding may be an important energy saving strategy during swimming in this size class of sturgeon.
Ontogenetic differentiation of swimming performance and behaviour in relation to habitat availability in the endangered North Sea houting (Coregonus oxyrinchus).
The survival of the highly endangered, anadromous fish species North Sea houting (Coregonus oxyrinchus) depends on the correct timing of downstream dispersal during its early ontogenetic stages. To date, however, no studies have investigated the ontogenetic differentiation of swimming performance and behaviour, including the potential of habitat complexity to influence dispersal rates. By testing larval and juvenile North Sea houting in a laboratory, we examined (1) swimming performance measured as maximum swimming performance (Umax) and routine swimming speed (Uroutine) and (2) the potential of habitat complexity (i.e., cover providing shade) to influence dispersal behaviour in an indoor stream channel. The Umax and the Uroutine were 9.4 and 4.6cm s-1, respectively, in the larvae [body length (BL) s-1: 7.3 and 3.5, respectively], and 25.2 and 16.3 cm s-1 in the juveniles (BL s-1: 7.0 and 5.2, respectively). We compared laboratory swimming performance data with water speeds in North Sea houting spawning areas in the Danish River Vidaa. Results showed that the water speeds present in 95% and 85% of the water column caused downstream displacement of larvae and juveniles, respectively. However, areas with slow-flowing water near river banks and river beds could function as nursery habitats. Stream channel experiments showed that cover providing shade caused delayed dispersal in both larvae and juveniles, but the larvae dispersed later and spent less time under cover than the juveniles, a finding that implies ontogenetic effects. Finally, the larvae refused to cross an upstream-positioned cover, a behaviour that was not observed in the juveniles. Therefore, habitat complexity may have the potential to influence dispersal behaviour in both larval and juvenile North Sea houting. Overall, we provided the first evidence of ontogenetic differentiation in the North Sea houting. These findings will be valuable for the development and dissemination of science-based conservation strategies.
The contribution of air breathing to aerobic scope and exercise performance in the banded knifefish Gymnotus carapo L.
The contribution of air breathing to aerobic metabolic scope and exercise performance was investigated in a teleost with bimodal respiration, the banded knifefish, submitted to a critical swimming speed (Ucrit) protocol at 30°C. Seven individuals (mean ± s.e.m. mass 89±7 g, total length 230±4 mm) achieved a Ucrit of 2.1±1 body lengths (BL) s–1 and an active metabolic rate (AMR) of 350±21 mg kg–1 h–1, with 38±6% derived from air breathing. All of the knifefish exhibited a significant increase in air-breathing frequency (fAB) with swimming speed. If denied access to air in normoxia, these individuals achieved a Ucrit of 2.0±0.2 BL s–1 and an AMR of 368±24 mg kg–1 h–1 by gill ventilation alone. In normoxia, therefore, the contribution of air breathing to scope and exercise was entirely facultative. In aquatic hypoxia (PO2=4 kPa) with access to normoxic air, the knifefish achieved a Ucrit of 2.0±0.1 BL s–1 and an AMR of 338±29 mg kg–1 h–1, similar to aquatic normoxia, but with 55±5% of AMR derived from air breathing. Indeed, fAB was higher than in normoxia at all swimming speeds, with a profound exponential increase during exercise. If the knifefish were denied access to air in hypoxia, Ucrit declined to 1.2±0.1 BL s–1 and AMR declined to 199±29 mg kg–1 h–1. Therefore, air breathing allowed the knifefish to avoid limitations to aerobic scope and exercise performance in aquatic hypoxia.
Swim performance and energy homeostasis in spottail shiner (Notropis hudsonius) collected downstream of a uranium mill.
This study documented the swimming capacity of a large ambush predator, Murray cod M accullochella peelii, endemic to the Murray‐Darling Basin, Australia. It was evident that the species is a swimming generalist, maintaining moderate ability across all aspects of the swimming capacity parameters that were investigated. For instance, the species was capable of prolonged swimming performance (critical swimming speed, U crit: absolute, 0.26–0.60 m·s −1, relative, 1.15–2.20 BL s −1 ) that was inferior to active fish species, but comparable with other ambush predators. The species had low energetic demands, maintaining a low mass‐specific standard (21.3–140.3 mg·h −1 kg −1 ) and maximum active metabolic rate (75.5–563.8 mg·h −1 kg −1 ), which lead to a small scope for activity (maximum active metabolic rate–standard metabolic rate; 1.4–5.9). They were reasonably efficient swimmers (absolute and relative optimal swimming speed, 0.17–0.61 m·s −1 and 0.77–1.93 BL·s −1, respectively) and capable of repeat bouts of prolonged performance (recovery ratio = 0.99). Allometric changes in aspects of swimming capacity were realised with body mass, whereas broad swimming capacity was maintained across a wide range of temperatures. The swimming capacity demonstrated by M. peelii reflects a sit‐and‐wait foraging strategy that seeks to conserve energy characteristic of ambush predators, but with distinct features (e.g., lack of fast‐start ability) that may reflect their evolution in some of the world's most hydrologically and thermally variable rivers.
Persistent effects on adult swim performance and energetics in zebrafish developmentally exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin.
There is a distinct need for fishway designs that are passable by small‐bodied fishes. Like many lotic systems worldwide, the streams of the North American Great Plains are frequently fragmented by instream structures and other potential migration barriers. This makes small‐bodied fishes of the North American Great Plains appropriate species to use for fishway development. The swimming and jumping abilities of brassy minnow Hybognathus hankinsoni, Arkansas darters Etheostoma cragini, and common shiners Luxilus cornutus, acclimated to water temperatures of 10, 17.5, and 25°C, were quantified in the laboratory. Endurance increased with temperature for brassy minnow but not for the other two species. Based on swimming trial results, current velocities in fishways should not exceed 64 cm/s for brassy minnow or common shiners and 32 cm/s for Arkansas darters. Jumping experiments showed that the presence of a low vertical barrier (5 cm high) dramatically reduced the probability of upstream movement of all three species. Brassy minnow jumped a maximum of 15 cm at 25°C, and common shiners jumped a maximum of 10 cm at 17.5°C. Neither species jumped at 10°C. Arkansas darters did not jump at any temperature. Behavioral observations also indicated that a submerged weir may inhibit the upstream movement of Arkansas darters. Based on the results of this laboratory study, water velocities of less than 0.75 m/s and avoidance of fishways with vertical drops or weir‐type structures will increase the probability of successful passage of small‐bodied fishes.
Aerobic capacity influences the spatial position of individuals within fish schools.
The schooling behaviour of fish is of great biological importance, playing a crucial role in the foraging and predator avoidance of numerous species. The extent to which physiological performance traits affect the spatial positioning of individual fish within schools is completely unknown. Schools of juvenile mullet Liza aurata were filmed at three swim speeds in a swim tunnel, with one focal fish from each school then also measured for standard metabolic rate (SMR), maximal metabolic rate (MMR), aerobic scope (AS) and maximum aerobic swim speed. At faster speeds, fish with lower MMR and AS swam near the rear of schools. These trailing fish required fewer tail beats to swim at the same speed as individuals at the front of schools, indicating that posterior positions provide hydrodynamic benefits that reduce swimming costs. Conversely, fish with high aerobic capacity can withstand increased drag at the leading edge of schools, where they could maximize food intake while possibly retaining sufficient AS for other physiological functions. SMR was never related to position, suggesting that high maintenance costs do not necessarily motivate individuals to occupy frontal positions. In the wild, shifting of individuals to optimal spatial positions during changing conditions could influence structure or movement of entire schools. Keywords: ecophysiology, group behaviour, trade-offs, metabolic rate
Repeat Swimming Performance and Its Implications for Inferring the Relative Fitness of Asexual Hybrid Dace (Pisces: Phoxinus ) and Their Sexually Reproducing Parental Species.
While theories explaining the evolution and maintenance of sex are abundant, empirical data on the costs and benefits of asexual relative to sexual reproduction are less common. Asexually reproducing vertebrates, while few, provide a rare opportunity to measure differences in fitness between asexual and sexual species. All known asexually reproducing vertebrates are of hybrid origin, and hybrid disadvantage (i.e., reduced hybrid fitness) is thought to facilitate long-term coexistence between asexual and sexual species. We used repeat swimming performance as a proxy for fitness to compare the fitness of asexual hybrid dace (Pisces: Phoxinus) and their sexually reproducing parental species, finescale dace (Phoxinus neogaeus) and northern redbelly dace (Phoxinus eos). We tested the prediction that, given the widespread coexistence of these hybrid and parental dace, the parental species should show equivalent and perhaps superior repeat performance relative to hybrids. A repeat constant acceleration test (U(max)) was conducted at both acclimation temperature (16 °C) and at an elevated temperature (25 °C) to simulate the combined influence of a repeat swim and acute temperature change that fish might experience in the wild. The asexual hybrids performed more poorly than at least one of the parental species. There was a negative effect of temperature on repeat swimming performance in all fish, and the repeat performance of hybrids was more severely affected by temperature than that of finescale dace. No difference in the effect of temperature on repeat performance was detected between hybrids and northern redbelly dace. These results suggest that hybrids suffer physiological costs relative to the parentals or at least that the hybrids do not gain advantage from hybrid vigor, which probably contributes to the coexistence of asexual and sexual species in this system.
Swimming performance tests of fish have been integral to studies of muscle energetics, swimming mechanics, gas exchange, cardiac physiology, disease, pollution, hypoxia and temperature. This paper describes a flexible protocol to assess fish swimming performance using equipment in which water velocity can be controlled. The protocol involves one to several stepped increases in flow speed that are intended to cause fish to fatigue. Step speeds and their duration can be set to capture swimming abilities of different physiological and ecological relevance. Most frequently step size is set to determine critical swimming velocity (U(crit;)), which is intended to capture maximum sustained swimming ability. Traditionally this test has consisted of approximately ten steps each of 20 min duration. However, steps of shorter duration (e.g. 1 min) are increasingly being utilized to capture acceleration ability or burst swimming performance. Regardless of step size, swimming tests can be repeated over time to gauge individual variation and recovery ability. Endpoints related to swimming such as measures of metabolic rate, fin use, ventilation rate, and of behavior, such as the distance between schooling fish, are often included before, during and after swimming tests. Given the diversity of fish species, the number of unexplored research questions, and the importance of many species to global ecology and economic health, studies of fish swimming performance will remain popular and invaluable for the foreseeable future.
Rainbow trout consume less oxygen in turbulence: the energetics of swimming behaviors at different speeds.
Measuring the rate of consumption of oxygen ( ) during swimming reveals the energetics of fish locomotion. We show that rainbow trout have substantially different oxygen requirements for station holding depending on which hydrodynamic microhabitats they choose to occupy around a cylinder. We used intermittent flow respirometry to show that an energetics hierarchy, whereby certain behaviors are more energetically costly than others, exists both across behaviors at a fixed flow velocity and across speeds for a single behavior. At 3.5 L s(-1) (L is total body length) entraining has the lowest, followed by Kármán gaiting, bow waking and then free stream swimming. As flow speed increases the costs associated with a particular behavior around the cylinder changes in unexpected ways compared with free stream swimming. At times, actually decreases as flow velocity increases. Entraining demands the least oxygen at 1.8 L s(-1) and 3.5 L s(-1), whereas bow waking requires the least oxygen at 5.0 L s(-1). Consequently, a behavior at one speed may have a similar cost to another behavior at another speed. We directly confirm that fish Kármán gaiting in a vortex street gain an energetic advantage from vortices beyond the benefit of swimming in a velocity deficit. We propose that the ability to exploit velocity gradients as well as stabilization costs shape the complex patterns of oxygen consumption for behaviors around cylinders. Measuring for station holding in turbulent flows advances our attempts to develop ecologically relevant approaches to evaluating fish swimming performance.
Adaptive trade-offs in juvenile salmonid metabolism associated with habitat partitioning between coho salmon and steelhead trout in coastal streams.
Adaptive trade-offs are fundamental to the evolution of diversity and the coexistence of similar taxa and occur when complimentary combinations of traits maximize efficiency of resource exploitation or survival at different points on environmental gradients. Standard metabolic rate (SMR) is a key physiological trait that reflects adaptations to baseline metabolic performance, whereas active metabolism reflects adaptations to variable metabolic output associated with performance related to foraging, predator avoidance, aggressive interactions or migratory movements. Benefits of high SMR and active metabolism may change along a resource (productivity) gradient, indicating that a trade-off exists among active metabolism, resting metabolism and energy intake. We measured and compared SMR, maximal metabolic rate (MMR), aerobic scope (AS), swim performance (UCrit) and growth of juvenile hatchery and wild steelhead and coho salmon held on high- and low-food rations in order to better understand the potential significance of variation in SMR to growth, differentiation between species, and patterns of habitat use along a productivity gradient. We found that differences in SMR, MMR, AS, swim performance and growth rate between steelhead trout and coho salmon were reduced in hatchery-reared fish compared with wild fish. Wild steelhead had a higher MMR, AS, swim performance and growth rate than wild coho, but adaptations between species do not appear to involve differences in SMR or to trade-off increased growth rate against lower swim performance, as commonly observed for high-growth strains. Instead, we hypothesize that wild steelhead may be trading off higher growth rate for lower food consumption efficiency, similar to strategies adopted by anadromous vs. resident brook trout and Atlantic salmon vs. brook trout. This highlights potential differences in food consumption and digestion strategies as cryptic adaptations ecologically differentiating salmonid species. We hypothesize that divergent digestive strategies, which are common and well documented among terrestrial vertebrates, may be an important but overlooked aspect of adaptive strategies of juvenile salmonids, and fish in general.
Sympatric Divergence and Performance Trade-Offs of Bluegill Ecomorphs.
Phenotypic plasticity in response to environmental cues can create distinct morphological types within populations. This variation in form, and potentially function, may be a factor in initiating population divergence and the formation of new species. Here we show the translation of sympatric, habitat-specific morphological divergence into performance differences in energy economy, maneuverability and steady-state locomotion. Littoral and pelagic bluegill sunfish ecomorphs show differences in performance that appear adaptive within their respective habitats: greater maneuverability in the heavily vegetated littoral; greater steady-state swimming speed and economy in the open-water pelagic. This represents a trade-off in unsteady versus steady swimming performance, likely because morphological features associated with maximizing maneuverability are incompatible with enhancing steady-swimming performance. This may constrain the direction of adaptive change, maintaining the divergence created by phenotypic plasticity. The combination of habitat specific sympatric adaptation and constraints imposed by performance trade-offs may be an important factor underlying the high rate of speciation in freshwater fishes from post-glacial lakes.
Reductions in prolonged swimming capacity following freshwater colonization in multiple threespine stickleback populations.
We compared ancestral anadromous-marine and nonmigratory, stream-resident threespine stickleback (Gasterosteus aculeatus) populations to examine the outcome of relaxed selection on prolonged swimming performance. We reared marine and stream-resident fish from two locations in a common environment and found that both stream-resident populations had lower critical swimming speeds (U(crits) ) than marine populations. F1 hybrids from the two locations displayed significant differences in dominance, suggesting that the genetic basis for variation in U(crit) differs between locations. To determine which traits evolved in conjunction with, and may underlie, differences in performance capacity we measured a suite of traits known to affect prolonged swimming performance in fish. Although some candidate traits did not evolve (standard metabolic rate and two body shape traits), multiple morphological (pectoral fin size, shape, and four body shape measures) and physiological (maximum metabolic rate; MMR) traits evolved in the predicted direction in both stream-resident populations. However, data from F1 hybrids suggested that only one of these traits (MMR) had dominance effects similar to those of U(crit) in both locations. Overall, our data suggest that reductions in prolonged swimming performance were selected for in nonmigratory populations of threespine stickleback, and that decreases in MMR may mediate these reductions in performance.
The effects of PIT tagging on the swimming performance and survival of three nonsalmonid freshwater fishes.
J. Wang, D. Panáková, K. Kikuchi, J. E. Holdway, M. Gemberling, J. S. Burris, S. P. Singh, A. L. Dickson, Y. F. Lin, M. K. Sabeh, A. A. Werdich, D. Yelon, C. A. MacRae and K. D. Poss (2011)
Natural models of heart regeneration in lower vertebrates such as zebrafish are based on invasive surgeries causing mechanical injuries that are limited in size. Here, we created a genetic cell ablation model in zebrafish that facilitates inducible destruction of a high percentage of cardiomyocytes. Cell-specific depletion of over 60% of the ventricular myocardium triggered signs of cardiac failure that were not observed after partial ventricular resection, including reduced animal exercise tolerance and sudden death in the setting of stressors. Massive myocardial loss activated robust cellular and molecular responses by endocardial, immune, epicardial and vascular cells. Destroyed cardiomyocytes fully regenerated within several days, restoring cardiac anatomy, physiology and performance. Regenerated muscle originated from spared cardiomyocytes that acquired ultrastructural and electrophysiological characteristics of de-differentiation and underwent vigorous proliferation. Our study indicates that genetic depletion of cardiomyocytes, even at levels so extreme as to elicit signs of cardiac failure, can be reversed by natural regenerative capacity in lower vertebrates such as zebrafish.
Swimming performance and energy homeostasis in juvenile laboratory raised fathead minnow (Pimephales promelas) exposed to uranium mill effluent.
Ecomorphology examines the relationship between morphology and ecological characteristics often in relation to foraging, predation, and habitat use. However, ecomorphology may also be linked to reproductive behaviour (“tactic”), but few studies have examined this relationship. We examined bluegill sunfish (Lepomis macrochirus Rafinesque, 1819), a species in which some males become “parentals” while others adopt a parasitic “cuckolder” tactic. Parentals build nests, court females, and care for the young. Cuckolders instead act as “sneakers”, darting into nests while females are releasing eggs, and then transition to “satellites”, mimicking female appearance. We predicted that reproductive tactic would be associated with morphological variation and swimming performance. We collected bluegill parentals, sneakers, satellites, females, and juveniles to compare morphology, burst swim, and swim endurance. We found significant morphological variation among the groups, with only satellites and females having similar body shapes. Interestingly, satellites did not overlap in shape with sneakers, despite representing a single ontogenetic life history, providing evidence for a relationship between reproductive tactic and morphology. We also found that swim performance varied among the groups, with sneakers having the fastest burst swim and longest swim endurance. Our results indicate that reproductive tactic is an important factor in the ecomorphology of fish.
Effects of nitrite exposure on functional haemoglobin levels, bimodal respiration, and swimming performance in the facultative air-breathing fish Pangasianodon hypophthalmus.
Pop-up satellite archival tags (PSATs) have recently been applied in attempts to follow the oceanic spawning migration of the European eel. PSATs are quite large, and in all likelihood their hydraulic drag constitutes an additional cost during swimming, which remains to be quantified, as does the potential implication for successful migration. Silver eels (LT = 598.6±29 mm SD, N = 9) were subjected to swimming trials in a Steffensen-type swim tunnel at increasing speeds of 0.3–0.9 body lengths s−1, first without and subsequently with, a scaled down PSAT dummy attached. The tag significantly increased oxygen consumption (MO2) during swimming and elevated minimum cost of transport (COTmin) by 26%. Standard (SMR) and active metabolic rate (AMR) as well as metabolic scope remained unaffected, suggesting that the observed effects were caused by increased drag. Optimal swimming speed (Uopt) was unchanged, whereas critical swimming speed (Ucrit) decreased significantly. Swimming with a PSAT altered swimming kinematics as verified by significant changes to tail beat frequency (f), body wave speed (v) and Strouhal number (St). The results demonstrate that energy expenditure, swimming performance and efficiency all are significantly affected in migrating eels with external tags.
Effects of acute and chronic waterborne lead exposure on the swimming performance and aerobic scope of fathead minnows (Pimephales promelas)
The ability of an animal to depress ATP turnover while maintaining metabolic energy balance is important for survival during hypoxia. In the present study, we investigated the responses of cardiac energy metabolism and performance in the hypoxia-tolerant tilapia ( Oreochromis hybrid sp.) during exposure to environmental hypoxia. Exposure to graded hypoxia (≥92% to 2.5% air saturation over 3.6 ± 0.2 h) followed by exposure to 5% air saturation for 8 h caused a depression of whole animal oxygen consumption rate that was accompanied by parallel decreases in heart rate, cardiac output, and cardiac power output (CPO, analogous to ATP demand of the heart). These cardiac parameters remained depressed by 50–60% compared with normoxic values throughout the 8-h exposure. During a 24-h exposure to 5% air saturation, cardiac ATP concentration was unchanged compared with normoxia and anaerobic glycolysis contributed to ATP supply as evidenced by considerable accumulation of lactate in the heart and plasma. Reductions in the provision of aerobic substrates were apparent from a large and rapid (in <1 h) decrease in plasma nonesterified fatty acids concentration and a modest decrease in activity of pyruvate dehydrogenase. Depression of cardiac ATP demand via bradycardia and an associated decrease in CPO appears to be an integral component of hypoxia-induced metabolic rate depression in tilapia and likely contributes to hypoxic survival.
Rainbow trout Oncorhynchus mykiss consume less energy when swimming near obstructions.
The effect of obstructions in steady flow on swimming by rainbow trout Oncorhynchus mykiss was examined in a respirometry swim tunnel to test the prediction that fish interacting with obstructions require less energy to hold station. When an obstruction was present, O. mykiss altered the kinematics of swimming and the rate of oxygen consumption was significantly reduced. The fish employed both entrainment and Kármán gait swimming strategies, permitting greater locomotor efficiency.
Partition of aerobic and anaerobic swimming costs related to gait transitions in a labriform swimmer.
Members of the family Embiotocidae exhibit a distinct gait transition from exclusively pectoral fin oscillation to combined pectoral and caudal fin propulsion with increasing swimming speed. The pectoral–caudal gait transition occurs at a threshold speed termed Up–c. The objective of this study was to partition aerobic and anaerobic swimming costs at speeds below and above the Up–c in the striped surfperch Embiotoca lateralis using swimming respirometry and video analysis to test the hypothesis that the gait transition marks the switch from aerobic to anaerobic power output. Exercise oxygen consumption rate was measured at 1.4, 1.9 and 2.3 L s–1. The presence and magnitude of excess post-exercise oxygen consumption (EPOC) were evaluated after each swimming speed. The data demonstrated that 1.4 L s–1 was below the Up–c, whereas 1.9 and 2.3 L s–1 were above the Up–c. These last two swimming speeds included caudal fin propulsion in a mostly steady and unsteady (burst-assisted) mode, respectively. There was no evidence of EPOC after swimming at 1.4 and 1.9 L s–1, indicating that the pectoral–caudal gait transition was not a threshold for anaerobic metabolism. At 2.3 L s–1, E. lateralis switched to an unsteady burst and flap gait. This swimming speed resulted in EPOC, suggesting that anaerobic metabolism constituted 25% of the total costs. Burst activity correlated positively with the magnitude of the EPOC. Collectively, these data indicate that steady axial propulsion does not lead to EPOC whereas transition to burst-assisted swimming above Up–c is associated with anaerobic metabolism in this labriform swimmer.
The effect of dietary fish oil and poultry fat replacement with canola oil on swimming performance and metabolic response to hypoxia in stream type spring Chinook salmon parr.
Swimming performance was assessed in juvenile pink salmon Oncorhynchus gorbuscha (body mass <5·0 g) using five different protocols: four constant acceleration tests each with a different acceleration profile (rates of 0·005, 0·011, 0·021 and 0·053 cm s −2 ) and a repeated ramped‐critical swimming speed test. Regardless of the swim protocol, the final swimming speeds did not differ significantly ( P > 0·05) among swim tests and ranged from 4·54 to 5·20 body lengths s −1. This result supports the hypothesis that at an early life stage, O. gorbuscha display the same fatigue speeds independent of the swimming test utilized. Whole body and plasma [Na + ] and [Cl − ] measured at the conclusion of these tests were significantly elevated when compared with control values ( P < 0·05) and appear to be predominantly associated with dehydration rather than net ion gain. Given this finding for a small salmonid, estimates of swim performance can be accurately measured with acceleration tests lasting <10 min, allowing a more rapid processing than is possible with a longer critical swim speed test.
Behaviour and performance of juvenile shortnose sturgeon Acipenser brevirostrum at different water velocities.
Critical swimming speeds (mean ± s. e.) for juvenile shortnose sturgeon Acipenser brevirostrum were 34·4 cm s −1 ± 1·7 (2·18 ± 0·09 body lengths, BL s −1 ). Swimming challenges at 10, 20 and 30 cm s −1 revealed that juvenile A. brevirostrum are relatively poor swimmers, and that the fish did not significantly modify their swimming behaviour, although they spent more time substratum skimming ( i.e. contact with flume floor) at 30 cm s −1 relative to 10 cm s −1. When present, these behavioural responses are probably related to morphological features, such as flattened rostrum, large pectoral fins, flattened body shape and heterocercal tail, and may be important to reduce the costs of swimming.
Swimming performance in Atlantic Cod (Gadus morhua) following long-term (4–12 months) acclimation to elevated seawater PCO2.
Flathead grey mullets Mugil cephalus are commonly found in Mediterranean lagoons, which are regularly subject to high environmental variations. Oxygen is one of the factors that shows extremely high variation. The objective of this study was to test the effects of acute hypoxia exposure at two experimental temperatures (i.e. 20 and 30°C) on the stamina (time to fatigue) in M. cephalus swimming at the minimal cost of transport (i.e. optimal swimming speed; Uopt). At each temperature, a relationship was established between swimming speed and oxygen consumption (MO2). This allowed estimation of Uopt at 45 cm s−1 (~1.12 Body Length s−1). Independent of temperature, stamina at Uopt was significantly reduced in severe hypoxia, i.e. at 15% of air saturation (AS). In these conditions, oxygen supply appears therefore to be insufficient to maintain swimming, even at the low speed tested here. After the stamina test, MO2 measured in fish tested at 15% AS was significantly higher than that measured after the test in normoxia. Therefore, we suggest that in hypoxia, fish used anaerobic metabolism to supplement swimming at Uopt, leading to an oxygen debt. Since flathead grey mullet is a hypoxia-tolerant species, it is possible that hypoxic conditions less severe than those tested here may reduce stamina at low speed in less tolerant species. In addition, we suggest that testing stamina at these speeds may be relevant in order to understand the effect of hypoxia on behavioural activities carried out at low speed, such as food searching.
The effects of acute temperature change on swimming performance in bluegill sunfish Lepomis macrochirus.
Many fish change gait within their aerobically supported range of swimming speeds. The effects of acute temperature change on this type of locomotor behavior are poorly understood. Bluegill sunfish swim in the labriform mode at low speeds and switch to undulatory swimming as their swimming speed increases. Maximum aerobic swimming speed (Umax),labriform-undulatory gait transition speed (Utrans) and the relationships between fin beat frequency and speed were measured at 14,18, 22, 26 and 30°C in bluegill acclimated to 22°C. At temperatures below the acclimation temperature (Ta), Umax, Utrans and the caudal and pectoral fin beat frequencies at these speeds were reduced relative to the acclimation level. At temperatures above Ta there was no change in these variables relative to the acclimation level. Supplementation of oxygen levels at 30°C had no effect on swimming performance. The mechanical power output of the abductor superficialis, a pectoral fin abductor muscle, was measured in vitro at the same temperatures used for the swimming experiments. At and below Ta, maximal power output was produced at a cycle frequency approximately matching the in vivo pectoral fin beat frequency. At temperatures above Ta muscle power output and cycle frequency could be increased above the in vivo levels at Utrans. Our data suggest that the factors triggering the labriform–undulatory gait transition change with temperature. Muscle mechanical performance limited labriform swimming speed at Ta and below, but other mechanical or energetic factors limited labriform swimming speed at temperatures above Ta.
The relationship between caudal differential pressure and activity of Atlantic cod: a potential method to predict oxygen consumption of free-swimming fish.
This study reports the first results on telemetry of caudal differential pressure during spontaneous swimming activity in cod Gadus morhua and demonstrates that tail‐beat pressure may be used as a predictor of activity and swimming costs of free‐swimming cod. Tail‐beat pressure was monitored using a differential pressure sensor on the caudal peduncle of cod and spontaneous swimming activity was quantified using a customized video‐computer tracking programme. Tail‐beat pressure was found to correlate with (1) swimming speed ( U ) and oxygen consumption during forced swimming and (2) mean U during spontaneous activity. Based on the relationship between and the integrated pressure performed by the tail during forced swimming, it should be possible to predict during spontaneous activity. To gain precise measures of activity and thus predictions of for free‐swimming fish, however, individual calibrations are necessary.
Bluefin tuna are endothermic and have higher temperatures, heart rates, and cardiac outputs than tropical tuna. We hypothesized that the increased cardiovascular capacity to deliver oxygen in bluefin may be associated with the evolution of higher metabolic rates. This study measured the oxygen consumption of juvenile Pacific bluefin Thunnus orientalis and yellowfin tuna Thunnus albacares swimming in a swim-tunnel respirometer at 20°C. Oxygen consumption ( Mo2) of bluefin (7.1–9.4 kg) ranged from 235 ± 38 mg kg-1 h-1 at 0.85 body length (BL) s-1 to 498 ± 55 mg kg-1 h-1 at 1.80 BL s-1. Minimal metabolic rates of swimming bluefin were 222 ± 24 mg O2 kg-1 h-1 at speeds of 0.75 to 1.0 BL s-1. Mo2 of T. albacares (3.7–7.4 kg) ranged from 164 ± 18 mg kg-1 at 0.65 BL s-1 to 405 ± 105 mg kg-1 h-1 at 1.8 BL s-1. Bluefin tuna had higher metabolic rates than yellowfin tuna at all swimming speeds tested. At a given speed, bluefin had higher metabolic rates and swam with higher tailbeat frequencies and shorter stride lengths than yellowfin. The higher Mo2 recorded in Pacific bluefin tuna is consistent with the elevated cardiac performance and enhanced capacity for excitation-contraction coupling in cardiac myocytes of these fish. These physiological traits may underlie thermal-niche expansion of bluefin tuna relative to tropical tuna species.
Swimming Performance of Sacramento Splittail Injected with Subcutaneous Marking Agents.
Mark–recapture studies are often used at fish-screening facilities near water diversions, such as those in the Sacramento–San Joaquin Delta, to quantify fish salvage efficiency. The accuracy of these salvage estimates and subsequent facility operational criteria are highly dependent on unbiased mark–recapture estimates. Marking techniques and agents that produce reduced swimming performance in marked fish could result in inaccurate estimates of fish salvage and facility efficiency. Two of the most commonly used marking agents and techniques for experimental purposes at these screening facilities are the subcutaneous injection of visual implant elastomers using a hypodermic needle and the subcutaneous injection of fluorescent latex microsphere solutions using a CO2-powered pneumatic marking gun. We tested the effects of these marking agents and techniques on the critical swimming velocity (Ucrit) of age-1 Sacramento splittail Pogonichthys macrolepidotus (mean ± SE total length = 9.9 ± 0.6 cm, wet weight = 9.1 ± 1.8 g), which were marked in the caudal peduncle or caudal fin. Absolute Ucrit (64.8 ± 5.2 cm/s) and relative Ucrit (7.0 ± 1.1 body lengths/s) were unaffected by marking technique or marking agent (2-way ANOVA). Our results suggest that the tested marking agents and techniques are suitable for use in mark–recapture studies because they are unlikely to affect the capture probability of fish through reductions in swimming performance.
Mechanical and energetic factors underlying gait transitions in Bluegill Sunfish (Lepomis macrochirus).
As their swimming speed increased, bluegill sunfish (Lepomis macrochirus) switched from pectoral-fin-powered labriform swimming to undulations of the body axis. This gait transition occurred at a mean swimming speed of 0.24±0.01 m s–1 and a pectoral fin beat frequency of 2.79±0.11 Hz (mean ± s.e.m., N=6). The power output available from the main upstroke (adductor profundus) and downstroke (abductor superficialis) muscles, measured using the work-loop technique was maximal at the gait transition point. The cost of transport,measured by respirometry, increased as the fish switched from labriform to undulatory swimming. Our data show that bluegill changed gait as swimming speed increased to recruit additional muscle mass, rather than to maximize economy, as is the case for many terrestrial animals.
Efficiency of labriform swimming in the Bluegill Sunfish (Lepomis macrochirus).
Bluegill sunfish (Lepomis macrochirus) swim in the labriform mode at low speeds, generating lift and thrust by beating their pectoral fins. The maximal power output available from the two largest pectoral fin adductor and abductor muscles, constituting half of the total pectoral girdle muscle mass,was measured in vitro and used to estimate the muscle mechanical power output during maximal labriform swimming (Pmech;0.15–0.21 W kg–1 body mass). Respirometry was used to estimate the total metabolic power input (Ptotal; 0.95 W kg–1 body mass) and the metabolic power available to the active muscle mass (Pmuscle; Ptotalminus standard metabolic rate, 0.57 W kg–1 body mass) at this swimming speed. Drag measurements made on towed, dead fish were used to estimate the mechanical power required to overcome body drag(Pdrag; 0.028 W kg–1 body mass). Efficiency estimates based on these data fell into the following ranges:overall swimming efficiency(ηgross=Pmech/Ptotal),0.16–0.22; muscle efficiency(ηmuscle=Pmech/Pmuscle),0.26–0.37; and propeller efficiency(ηprop=Pdrag/Pmech),0.15–0.20. Comparison with other studies suggests that labriform swimming may be more efficient than swimming powered by undulations of the body axis.
Effects of temperature, swimming speed and body mass on standard and active metabolic rate in vendace (Coregonus albula).
This study gives an integrated analysis of the effects of temperature, swimming speed and body mass on standard metabolism and aerobic swimming performance in vendace (Coregonus albula (L.)). The metabolic rate was investigated at 4, 8 and 15°C using one flow-through respirometer and two intermittent-flow swim tunnels. We found that the standard metabolic rate (SMR), which increased significantly with temperature, accounted for up to 2/3 of the total swimming costs at optimum speed (U opt), although mean U opt was high, ranging from 2.0 to 2.8 body lengths per second. Net swimming costs increased with swimming speed, but showed no clear trend with temperature. The influence of body mass on the metabolic rate varied with temperature and activity level resulting in scaling exponents (b) of 0.71–0.94. A multivariate regression analysis was performed to integrate the effects of temperature, speed and mass (AMR = 0.82M 0.93 exp(0.07T) + 0.43M 0.93 U 2.03). The regression analysis showed that temperature affects standard but not net active metabolic costs in this species. Further, we conclude that a low speed exponent, high optimum speeds and high ratios of standard to activity costs suggest a remarkably efficient swimming performance in vendace.
The effect of external dummy transmitters on oxygen consumption and performance of swimming Atlantic cod
Decreased critical swimming speed and increased oxygen consumption ( ) was found for externally tagged Atlantic cod Gadus morhua swimming at a high speed of 0·9 body length (total length, L T ) s −1. No difference was found in the standard metabolic rate, indicating that the higher for tagged cod was due to drag force rather than increased costs to keep buoyancy.
Swimming energetics of the Barents Sea capelin (Mallotus villosus) during the spawning migration period.
To determine the energetic costs of rigid-body, median or paired-fin (MPF)swimming versus undulatory, body-caudal fin (BCF) swimming, we measured oxygen consumption as a function of swimming speed in two MPF swimming specialists, Schlegel's parrotfish and Picasso triggerfish. The parrotfish swam exclusively with the pectoral fins at prolonged swimming speeds up to 3.2 total lengths per second (L s-1; 30 min critical swimming speed, Ucrit). At higher speeds, gait transferred to a burst-and-coast BCF swimming mode that resulted in rapid fatigue. The triggerfish swam using undulations of the soft dorsal and anal fins up to 1.5 L s-1, beyond which BCF undulations were recruited intermittently. BCF swimming was used continuously above 3.5 L s-1, and was accompanied by synchronous undulations of the dorsal and anal fins. The triggerfish were capable of high, prolonged swimming speeds of up to 4.1 L s-1 (30 min Ucrit). In both species, the rates of increase in oxygen consumption with swimming speed were higher during BCF swimming than during rigid-body MPF swimming. Our results indicate that, for these species,undulatory swimming is energetically more costly than rigid-body swimming, and therefore support the hypothesis that MPF swimming is more efficient. In addition, use of the BCF gait at higher swimming speed increased the cost of transport in both species beyond that predicted for MPF swimming at the same speeds. This suggests that, unlike for terrestrial locomotion, gait transition in fishes does not occur to reduce energetic costs, but to increase recruitable muscle mass and propulsive surfaces. The appropriate use of the power and exponential functions to model swimming energetics is also discussed.
Energy savings in sea bass swimming in a school: measurements of tail beat frequency and oxygen consumption at different swimming speeds
Tail beat frequency of sea bass, Dicentrarchus labrax (L.) (23.5 ± 0·5 cm, L T ), swimming at the front of a school was significantly higher than when swimming at the rear, for all water velocities tested from 14·8 to 32 cm s −1. The logarithm of oxygen consumption rate, and the tail beat frequency of solitary swimming sea bass (28·8 ± 0·4 cm, L T ), were each correlated linearly with swimming speed, and also with one another. The tail beat frequency of individual fish was 9–14% lower when at the rear of a school than when at the front, corresponding to a 9–23% reduction in oxygen consumption rate.